QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#33414 | #3008. Rocket Powered Hovercraft | simonfallon19 | RE | 2ms | 4288kb | C++11 | 7.5kb | 2022-06-01 02:53:14 | 2022-06-01 02:53:16 |
Judging History
answer
//#pragma GCC optimize("O3")
////(UNCOMMENT WHEN HAVING LOTS OF RECURSIONS)\
//#pragma comment(linker, "/stack:200000000")
////(UNCOMMENT WHEN NEEDED)
//#pragma GCC optimize("Ofast,unroll-loops,no-stack-protector,fast-math")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include <bits/stdc++.h>
#define fi first
#define se second
#define forn(i,n) for(int i=0; i< (int)n; ++i)
#define for1(i,n) for(int i=1; i<= (int)n; ++i)
#define fore(i,l,r) for(int i=(int)l; i<= (int)r; ++i)
#define fored(i,l,r) for(int i=(int)r; i>= (int)l; --i)
#define pb push_back
#define el '\n'
#define d(x) cout<< #x<< " " << x<<el
#define sz(v) ((int)v.size())
#define all(v) v.begin(),v.end()
using namespace std;
typedef long long ll;
typedef pair<int,int> ii;
typedef tuple<int,int,int> iii;
typedef vector<int> vi;
typedef vector<ll> vll;
const double pi = acos(-1), eps = 1e-9;
const int inf = 1e9, mod = 1e9+7, N = 1e5 + 10;
int x, y;
double v, w, R, a, nor;
struct pt { // for 3D add z coordinate
double x,y;
pt(double x, double y):x(x),y(y){}
pt(){}
double norm2(){return abs((*this)*(*this));}
double norm(){return sqrt(norm2());}
bool operator==(pt p){return abs(x-p.x)<=eps&&abs(y-p.y)<=eps;}
bool operator!=(pt p){ return !operator==(p);}
bool operator<(pt p)const{ // for convex hull/set/map
return x<p.x-eps||(abs(x-p.x)<=eps&&y<p.y-eps);}
pt operator+(pt p){return pt(x+p.x,y+p.y);}
pt operator-(pt p){return pt(x-p.x,y-p.y);}
pt operator*(double t){return pt(x*t,y*t);}
pt operator/(double t){return pt(x/t,y/t);}
///DOT
double operator*(pt p){return x*p.x+y*p.y;}
// pt operator%(pt p){ // 3D
// return pt(y*p.z-z*p.y,z*p.x-x*p.z,x*p.y-y*p.x);}
double angle(pt p){ ///[0, pi]
double co = *this*p/(norm()*p.norm());
return acos(max(-1.0, min(1.0, co)));
}
pt unit(){return *this/norm();}
double operator%(pt p){return x*p.y-y*p.x;}
/// 2D from now on
bool left(pt p, pt q){ // is it to the left of directed line pq?
return (q-p)%(*this-p)>eps;
}
int left_int(pt p, pt q){ // is it to the left of directed line pq?
double cro = (q-p)%(*this-p);
if(cro < eps)
return -1;
else
return (abs(cro) <= eps ? 0 : 1);
}
pt rot(pt r){return pt(*this%r,*this*r);}
pt rot(double a){return rot(pt(sin(a),cos(a)));}
pt rotp(double a, pt p){
pt aux = (*this - p).rot(a);
return aux + p;
}
};
pt ccw90(1,0), cw90(-1,0);
int sgn(double x){
if(x<0)
return -1;
else if(abs(x) <= eps)
return 0;
else
return 1;
}
int sgn2(double x){return x<0?-1:1;}
struct ln {
pt p, pq; //POINT + DIRECTION
ln(pt p, pt q) : p(p), pq(q-p){}
ln(double a, double b, double c) : p(b == 0 ? pt(-c/a, 0) : pt(0, -c/b)), pq(pt(b, -a)){} ///ax + by + c = 0
ln(){}
bool has(pt r){return dist(r)<=eps;} ///check if point belongs
bool seghas(pt r){return has(r)&&(r-p)*(r-(p+pq))<=eps;} ///check if point belongs to segment PQ
// bool operator /(ln l){return (pq.unit()^l.pq.unit()).norm()<=eps;} // 3D
bool operator/(ln l){return abs(pq.unit()%l.pq.unit())<=eps;} /// PARALLEL CHECK
bool operator==(ln l){return *this/l&&has(l.p);}
pt operator^(ln l){ /// intersection ln-ln
if(*this/l) return pt(inf,inf);
pt r=l.p+l.pq*((p-l.p)%pq/(l.pq%pq));
// if(!has(r)){return pt(NAN,NAN,NAN);} // check only for 3D
return r;
}
double angle(ln l){return pq.angle(l.pq);} ///angle bet. 2 lines
int side(pt r){return has(r)?0:sgn2(pq%(r-p));} /// 1=L, 0= on, -1=R
pt proj(pt r){return p+pq*((r-p)*pq/pq.norm2());}
pt refl(pt r){return proj(r)*2-r;}
double dist(pt r){return (r-proj(r)).norm();}
double dist2(pt r){return (r - proj(r)).norm2();}
// ls dist(ln l){ // only 3D
// if(*this/l)return dist(l.p);
// return abs((l.p-p)*(pq^l.pq))/(pq^l.pq).norm();
// }
ln rot(pt a){return ln(p,p+pq.rot(a));} /// 2D respecto a P
ln rot(double a){return ln(p,p+pq.rot(a));} /// 2D respecto a P
ln perp_at(pt r){return ln(r, r+pq.rot(ccw90));}
bool cmp_proj(pt r, pt s){return pq*r<pq*s;}
int cmp_int(pt r, pt s){
if(pq*r < pq*s)
return -1;
else
return (pq*r == pq*s ? 0 : 1);
}
ln trans(pt d){ return ln(p + d, pq);} ///d = dir. vec
};
ln bisec(ln l, ln m){ /// angle bisector
pt p=l^m;
return ln(p, p+l.pq.unit()+m.pq.unit());
}
ln bisec(pt p, pt q){ /// segment bisector (2D) (mediatriz)
return ln((p+q)*.5,p).rot(ccw90);
}
pt perp(pt p) {return {-p.y, p.x};}
struct circle {
pt o; double r;
circle(pt o, double r):o(o),r(r){}
circle(pt x, pt y, pt z){o=bisec(x,y)^bisec(x,z);r=(o-x).norm();}///circumcircle
bool has(pt p){return (o-p).norm()<r-eps;}
vector<pt> operator^(circle c){ // ccw
vector<pt> s;
double d = (o - c.o).norm();
if(d > r+c.r+eps || d+min(r,c.r)+eps < max(r,c.r)) return s;
double x = (d*d - c.r*c.r + r*r)/(2*d);
double y = sqrt(r*r - x*x);
pt v = (c.o - o)/d;
s.pb(o + v*x - v.rot(ccw90)*y);
if(y>eps) s.pb(o + v*x + v.rot(ccw90)*y);
return s;
}
vector<pt> operator^(ln l){
vector<pt> s;
pt p=l.proj(o);
double d=(p-o).norm();
if(d-eps>r)return s;
if(abs(d-r)<=eps){s.pb(p);return s;}
d=sqrt(r*r-d*d);
s.pb(p+l.pq.unit()*d);
s.pb(p-l.pq.unit()*d);
return s;
}
vector<pt> Tang(pt p){
pt o1 = o, o2 = p;
double r1 = r, r2 = 0;
pt d = o2-o1;
double dr = r1-r2, d2 = d.norm2(), h2 = d2-dr*dr;
vector<pt> out;
for (double sign : {-1,1}) {
pt v = (d*dr + perp(d)*sqrt(h2)*sign)/d2;
out.pb(o1 + (v*r1));
}
return out;
}
bool in(circle c){ // non strict
double d = (o-c.o).norm();
return d+r <= c.r+eps;
}
};
double orient(pt a, pt b, pt c){ ///C: >0 left, ==0 on AB, <0 right
return (b-a)%(c-a);
}
double small_angle(pt p, pt q){ ///[0, pi] ([0, 180])
return acos(max(-1.0, min((p*q)/(p.norm()*q.norm()), 1.0)));
}
double dir_ang_CCW(pt a, pt b, pt c){ ///Vertex = B, from BA -> BC (CCW)
if(orient(a,b,c) <= 0){
return small_angle(a-b, c-b);
} else{
return 2*pi - small_angle(a-b, c-b);
}
}
double calc(double m){
double xx = nor*cos(a-m), yy = nor*sin(a-m);
assert(yy >= 0);
pt p(xx, yy), cen(0, R);
circle c(cen, R);
if(c.has(p)) return 1e9;
auto pts = c.Tang(p);
pt best, o(0,0);
if(sz(pts) > 1){
if(dir_ang_CCW(o, cen, pts[0]) > dir_ang_CCW(o, cen, pts[1]))
best = pts[1];
else
best = pts[0];
} else if(isnan(pts[0].x) || isnan(pts[0].y))
best = p;
else
best = pts[0];
double ans = m/w + (dir_ang_CCW(o, cen, best)*R + (p - best).norm())/v;
//d(m/w);d(ans);d(dir_ang_CCW(o, cen, best)*r);d((p - best).norm());
pt b = p - best;
//d(pts[0].x); d(best.y);d(sz(pts));
return ans;
}
double solve1(){
cin >> x >> y;
y = abs(y);
cin >> v >> w;
R = v/w;
a = atan2(y, x);
nor = sqrt(x*x+y*y);
double l= 0, r=a, ans = min(calc(l), calc(r)), inf = 1e9;
ans = min({ans,calc(l), calc(r)});
while(r-l > eps){
double m1 = (2l + r)/3, m2= (l + 2*r)/3.0;
double v1 = calc(m1), v2 = calc(m2);
if(v1 == inf && v2 == inf){
double vl = calc(l), vr = calc(r);
//assert(vl < inf || vr < inf);
if(calc(r) < inf){
l = m2;
} else{
r = m1;
}
} else if(v2 < v1){
l = m1;
} else{
r = m2;
}
}
ans = min({ans,calc(l), calc(r)});
return ans;
}
int main(){
ios_base::sync_with_stdio(false);
cin.tie(NULL); cout.tie(NULL);
cout << setprecision(10) << fixed;
double a1 = solve1();
cout << a1 << el;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 2ms
memory: 4288kb
input:
45 179 0.94 3.34
output:
196.4571416878
result:
ok found '196.45714', expected '196.45714', error '0.00000'
Test #2:
score: -100
Dangerous Syscalls
input:
365 243 1.55 0.15