QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#326576#8229. 栈Xiaohuba18 193ms250444kbC++239.6kb2024-02-13 14:30:342024-02-13 14:30:34

Judging History

你现在查看的是最新测评结果

  • [2024-02-13 14:30:34]
  • 评测
  • 测评结果:18
  • 用时:193ms
  • 内存:250444kb
  • [2024-02-13 14:30:34]
  • 提交

answer

#include <bits/stdc++.h>

using namespace std;

// #define LOCK_GETCHAR
// #define USE_INT_128

#if __cplusplus < 201400
#warning "Please use c++14 or higher."
#define CONSTEXPR_FUNC
#define ENABLE_IF_INT
#else
#define CONSTEXPR_FUNC constexpr
#define ENABLE_IF_INT , enable_if_t<_is_integer<T>, int> = 0
template <class T> constexpr bool _is_integer = numeric_limits<T>::is_integer;
template <> constexpr bool _is_integer<bool> = false;
template <> constexpr bool _is_integer<char> = false;
#ifdef USE_INT_128
template <> constexpr bool _is_integer<__int128> = true;
template <> constexpr bool _is_integer<__uint128_t> = true;
#endif
template <class T ENABLE_IF_INT>
constexpr T INF = numeric_limits<T>::max() >> 1;
#endif

#if !defined(_WIN32) && !defined(LOCK_GETCHAR)
#define getchar getchar_unlocked
#endif

#define il inline
#define mkp make_pair
#define fi first
#define se second
#define For(i, j, k) for (decltype(j - k) i = (j); i <= (k); ++i)     // NOLINT
#define ForDown(i, j, k) for (decltype(j - k) i = (j); i >= (k); --i) // NOLINT
#define pb push_back
#define eb emplace_back
#ifndef ONLINE_JUDGE
#define FileIO(filename)                                                       \
  freopen(filename ".in", "r", stdin);                                         \
  freopen(filename ".out", "w", stdout)
#else
#define FileIO(filename) void(0)
#endif

using ll = long long;
using uint = unsigned int;
using ull = unsigned long long;
using db = double;
using ldb = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
#ifdef USE_INT_128
using lll = __int128_t;
using ulll = __uint128_t;
#endif

// clang-format off
template<typename T> constexpr il T sq(const T & x){ return x * x; }
template<typename T> CONSTEXPR_FUNC il void cmin(T & x, const T &y){ x = min(x, y); }
template<typename T> CONSTEXPR_FUNC il void cmax(T & x, const T &y){ x = max(x, y);}
template<typename T> CONSTEXPR_FUNC il T qpow(T x, ull y, T mod){T ans = 1; x %= mod; while (y) { if(y & 1)(ans *= x) %= mod;(x *= x) %= mod; y >>= 1;} return ans;}
template<typename T> CONSTEXPR_FUNC il T qpow(T x, ull y){T ans = 1; while (y) {if(y & 1) ans *= x;x *= x;y >>= 1;} return ans;}
template<typename T ENABLE_IF_INT> il void read(T &x){ x = 0; int f = 1; int c = getchar(); while(!isdigit(c)) {if (c == '-') f = -1;c = getchar();} while(isdigit(c)) {x = x * 10 + c - '0';c = getchar();} x *= f;}
template<typename T, typename ... Args> il void read(T &x, Args &... y){ read(x); read(y...); }
// clang-format on

// File head end

namespace {
class WBLT {
  static il constexpr db alpha = 1.0 - 1.4142136 / 2;
  static il constexpr ll INITIAL_SIZE = 3e6;
  struct Node {
    int lc, rc, sz;
    ll sum, weight;
    Node() : lc(0), rc(0), sz(0), sum(0), weight(0) {}
  };
  static il vector<Node> T{INITIAL_SIZE};
  static il int cnt = 0;
  static il int new_nd() {
    if (cnt + 1 == T.size())
      T.resize(T.size() * 1.5);
    return ++cnt;
  }
#define lc(p) (T[p].lc)
#define rc(p) (T[p].rc)
#define sz(p) (T[p].sz)
#define weight(p) (T[p].weight)
  static il void pu(int p) {
    assert(lc(p) && rc(p));
    sz(p) = sz(lc(p)) + sz(rc(p));
    T[p].sum = T[lc(p)].sum + T[rc(p)].sum;
    T[p].weight = T[lc(p)].weight + T[rc(p)].weight;
  }
  static il int __merge(int lc, int rc) {
    int p = new_nd();
    return lc(p) = lc, rc(p) = rc, pu(p), p;
  }
  static int merge(int p, int q) {
    if (!p || !q)
      return p | q;
    auto val = alpha * (sz(p) + sz(q));
    if (min(sz(p), sz(q)) >= val)
      return __merge(p, q);
    else if (sz(p) >= sz(q)) {
      if (sz(lc(p)) >= val) {
        int pre = p;
        p = new_nd(), T[p] = T[pre];
        return rc(p) = merge(rc(p), q), pu(p), p;
      } else {
        int u = merge(lc(p), lc(rc(p))), v = merge(rc(rc(p)), q);
        return merge(u, v);
      }
    } else {
      if (sz(rc(q)) >= val) {
        int pre = q;
        q = new_nd(), T[q] = T[pre];
        return lc(q) = merge(p, lc(q)), pu(q), q;
      } else {
        int u = merge(p, lc(lc(q))), v = merge(rc(lc(q)), rc(q));
        return merge(u, v);
      }
    }
  }
  static pii split(int p, ll rk) {
    assert(p);
    if (!rk)
      return {0, p};
    else if (sz(p) == 1) {
      if (rk == weight(p))
        return {p, 0};
      else {
        assert(rk < weight(p));
        int u = new_nd(), v = new_nd();
        ll val = T[p].sum / weight(p);
        sz(u) = sz(v) = 1;
        weight(u) = rk, T[u].sum = val * weight(u);
        weight(v) = weight(p) - rk, T[v].sum = val * weight(v);
        return {u, v};
      }
    }
    if (rk <= weight(lc(p))) {
      auto [u, v] = split(lc(p), rk);
      return {u, merge(v, rc(p))};
    } else {
      auto [u, v] = split(rc(p), rk - weight(lc(p)));
      return {merge(lc(p), u), v};
    }
  }
  static ll query(int p, ll ql, ll qr) {
    // if (!(ql >= 1 && ql <= qr))
    //  cerr << ql << ' ' << qr << '\n';
    assert(ql >= 1 && ql <= qr);
    if (!p)
      return 0;
    else if (sz(p) == 1) {
      ll cnt = min(qr, weight(p)) - ql + 1, val = T[p].sum / T[p].weight;
      return cnt * val;
    } else if (ql == 1 && qr >= weight(p))
      return T[p].sum;
    ll ans = 0, mid = weight(lc(p));
    if (ql <= mid)
      ans += query(lc(p), ql, qr);
    if (qr > mid)
      ans += query(rc(p), max(1ll, ql - mid), qr - mid);
    return ans;
  }

  int rt = 0;
  WBLT(int _rt) : rt(_rt) {}

public:
  WBLT() : rt(0) {}
  il void join(WBLT rhs) { rt = merge(rt, rhs.rt); }
  static il WBLT join2(WBLT x, WBLT y) { return {merge(x.rt, y.rt)}; }
  il void push(ll val, ll cnt) {
    int p = new_nd();
    sz(p) = 1, weight(p) = cnt, T[p].sum = val * weight(p);
    rt = merge(rt, p);
  }
  il void pop_back(ll cnt) {
    if (weight(rt) <= cnt)
      return rt = 0, void();
    auto [u, v] = split(rt, weight(rt) - cnt);
    assert(weight(u) == weight(rt) - cnt);
    rt = u;
  }
  il void pop_front(ll cnt) {
    if (weight(rt) <= cnt)
      return rt = 0, void();
    auto [u, v] = split(rt, cnt);
    rt = v;
  }
  il ll qry_sum(ll st, ll ed) const {
    if (st > this->size())
      return 0;
    else {
      // cerr << st << ' ' << min(ed, weight(rt)) << '\n';
      return query(rt, st, min(ed, weight(rt)));
    }
  }
  il ll size() const { return weight(rt); }
  il void clear() { rt = 0; }
#undef lc
#undef rc
#undef sz
#undef weight
};
namespace SGT {
constexpr ll MAXN = 1e5 + 5;
using tag_t = tuple<short, ll, WBLT>;
il short &_type(tag_t &x) { return get<0>(x); }
struct Node {
  int l, r;
  array<tag_t, 2> tags;
  Node() : l(0), r(0), tags() {}
} static T[MAXN << 1];
#define mid(p) ((T[p].l + T[p].r) >> 1)
#define lc(p) (mid(p) << 1)
#define rc(p) (mid(p) << 1 | 1)
il void f(int p, tag_t tg) {
  int id = !!get<0>(T[p].tags[1]), tp1 = _type(T[p].tags[id]), tp2 = _type(tg);
  tag_t &cur = T[p].tags[id];
  assert(!id || tp1 == 2);
  if (tp2 == 1) { // pop
    ll cnt = get<1>(tg), val = get<2>(cur).size();
    if (tp1 == 1)
      get<1>(cur) += cnt;
    else if (val >= cnt)
      get<2>(cur).pop_back(cnt);
    else {
      get<2>(cur).clear();
      if (id) {
        assert(get<0>(T[p].tags[0]) == 1);
        cur = {};
      }
      _type(T[p].tags[0]) = 1;
      get<1>(T[p].tags[0]) += cnt - val;
    }
  } else if (tp2 == 2) { // push
    if (tp1 != 1)
      _type(cur) = 2, get<2>(cur).join(get<2>(tg));
    else {
      assert(id == 0);
      T[p].tags[1] = tg;
      assert(get<0>(T[p].tags[1]) == 2);
    }
  }
}
il void pd(int p) {
  f(lc(p), T[p].tags[0]), f(rc(p), T[p].tags[0]);
  f(lc(p), T[p].tags[1]), f(rc(p), T[p].tags[1]);
  T[p].tags[0] = T[p].tags[1] = {};
}
void build(int p, int l, int r) {
  T[p].l = l, T[p].r = r;
  if (l == r)
    return;
  int mid = (l + r) >> 1;
  build(lc(p), l, mid), build(rc(p), mid + 1, r);
}
void push(int p, int ql, int qr, int val, int cnt) {
  int l = T[p].l, r = T[p].r;
  if (ql <= l && qr >= r) {
    WBLT tag;
    tag.push(val, cnt);
    f(p, make_tuple(2, 0, tag));
    return;
  }
  pd(p);
  if (ql <= mid(p))
    push(lc(p), ql, qr, val, cnt);
  if (qr > mid(p))
    push(rc(p), ql, qr, val, cnt);
}
void pop(int p, int ql, int qr, ll cnt) {
  int l = T[p].l, r = T[p].r;
  if (ql <= l && qr >= r)
    return f(p, make_tuple(1, cnt, WBLT{}));
  pd(p);
  if (ql <= mid(p))
    pop(lc(p), ql, qr, cnt);
  if (qr > mid(p))
    pop(rc(p), ql, qr, cnt);
}
ll qry(int p, int pos, ll L, ll R) {
  if (T[p].l == T[p].r) {
    int id = (get<0>(T[p].tags[0]) == 1);
    // cerr << "> " << id << ' ' << get<1>(T[p].tags[0]) << ' '
    //  << get<2>(T[p].tags[id]).size() << '\n';
    return get<2>(T[p].tags[id]).qry_sum(L, R);
  }
  pd(p);
  if (pos <= mid(p))
    return qry(lc(p), pos, L, R);
  else
    return qry(rc(p), pos, L, R);
}
#undef mid
#undef lc
#undef rc
}; // namespace SGT
int n, m;
il void Main() {
  read(n, m);
  SGT::build(1, 1, n);
  For(i, 1, m) {
    int op, x = 0;
    ll y = 0, z = 0, w = 0;
    read(op, x, y, z);
    if (op == 1) {
      read(w);
      SGT::push(1, x, y, w, z);
    } else if (op == 2)
      SGT::pop(1, x, y, z);
    else if (op == 3)
      printf("%lld\n", SGT::qry(1, x, y, z));
    // if (i > 16)
    // cout << op << ' ' << x << ' ' << y << ' ' << z << '\n';
  }
  // WBLT tr;
  // tr.push(2, 3);
  // cout << tr.size() << ' ' << tr.qry_sum(2, 4) << '\n';
}
} // namespace

signed main() { return Main(), 0; }
/*
[1                          10]
[1           5][6           10]
[1     3][4  5][6     8][9  10]
[1  2][3][4][5][6  7][8][9][10]
[1][2]         [6][7]
*/

详细

Subtask #1:

score: 18
Accepted

Test #1:

score: 18
Accepted
time: 9ms
memory: 107556kb

input:

4907 4910
2 763 3330 1
3 307 1 1
1 2262 3430 22699 89397
1 1915 4000 51541 67587
2 212 2990 9763
2 1086 2162 1
2 1813 4496 16760
1 51 2796 68005 99390
1 1267 1519 74236 66178
3 1768 23808 54314
2 900 4122 27758
3 3287 17350 28989
2 3277 4024 3633
2 444 4866 1
2 353 4219 1061
1 987 3141 99906 17320
2...

output:

0
3032090730
903396180
471569175
200648623
98486697
647114751
123945
50793012
61782451
0
0
0
762429740
321140700
871619914
536311874
5361094892
0
1792521566
6640518748
2415375780
249435711
225987900
5250788038
1145132507
140071334
0
118545795
3086405469
5646099271
84280112
1232466642
4992966775
7968...

result:

ok 1622 numbers

Test #2:

score: 0
Accepted
time: 4ms
memory: 107588kb

input:

4992 4958
2 2965 3892 1
3 2141 1 1
3 4963 1 1
3 2298 1 1
3 2236 1 1
1 3393 4668 65533 8224
1 884 2343 86158 41289
3 4617 12174 63763
2 898 4236 44143
2 2860 4246 1
2 2696 3014 1
2 496 1635 15779
3 2230 8262 39805
2 3287 3627 5350
2 3443 4900 19874
1 535 1622 26926 88406
1 3272 3747 94290 19081
2 812...

output:

0
0
0
0
424276160
1302420216
0
393525459
0
188112684
0
38587680
696225296
717180100
2193537294
297696966
0
0
0
124461621
26876032
1609925499
0
3681040200
51602516
1502016
0
8636592
1138256753
196684293
0
16126264
959145423
58640451
1945754097
2949696960
0
3577791360
2029416288
2361290004
5882833609
...

result:

ok 1597 numbers

Test #3:

score: 0
Accepted
time: 20ms
memory: 107880kb

input:

4980 4984
1 183 4891 75896 45281
2 767 3528 1367
3 2313 45535 49112
2 529 4006 1568
2 2114 2971 3819
3 3237 30655 31381
1 2074 2176 51631 35339
3 1602 95 16082
2 1340 3727 9249
2 105 1907 11928
3 2461 15189 33999
2 1450 1956 4721
1 700 4760 3043 92859
2 329 2992 6515
3 1295 10832 40486
2 3477 4447 8...

output:

162015418
32919287
723952628
851780891
1342808055
38307726
4701651115
903944603
240532672
652952020
1168430924
2253203546
3542990917
5872603595
305017015
657095398
25321688
1834305604
0
256832266
2732654054
1757936801
1158797383
656866283
3470700279
694675745
1042863834
76284096
6705704850
475899629...

result:

ok 1645 numbers

Test #4:

score: 0
Accepted
time: 15ms
memory: 107884kb

input:

4976 4948
2 858 1218 1
1 780 1528 70910 12344
1 681 4398 25997 59182
1 4564 4692 72420 96925
1 1124 2604 98159 98651
3 4734 1 1
2 1921 3430 3373
1 3805 3909 56118 23383
2 1471 2065 23679
2 1052 1154 30740
1 1098 2180 13716 29728
1 1094 3585 2073 93894
1 2024 4201 39023 1713
3 1571 21453 96893
3 1297...

output:

0
7262943486
185110624
53327400
957813600
383014415
1539405803
896522316
1454164560
7158196459
479198625
1943839360
1189657450
23355822139
2684778350
183742084
6400082784
2310401225
2082631008
5644811789
1875949890
3185562597
7185156304
3147144197
1588457333
676240200
1122598010
8758314557
100699296...

result:

ok 1663 numbers

Test #5:

score: 0
Accepted
time: 15ms
memory: 107596kb

input:

4944 4934
1 468 4845 87517 63656
3 4756 22899 79177
1 761 1054 45331 86403
1 24 2806 46189 11490
1 2602 4446 12528 14317
3 2601 51537 65051
1 1502 3573 79699 84830
3 1998 35405 151264
1 2400 4041 95071 83748
1 2050 3772 23643 53614
3 2261 51072 236192
2 1317 1908 6197
2 949 2543 30190
1 1457 4573 33...

output:

3582496024
860310840
5337461878
10833286574
1397502876
3735482073
4207877274
17671620
10854427218
1484917319
5462491276
1497165465
1453546510
1672688712
1158344316
1014734250
3797802047
15668090927
14634073116
32337553147
2159971110
12088416736
90924880
1410366456
13829776128
12126485158
18393654569...

result:

ok 829 numbers

Subtask #2:

score: 0
Memory Limit Exceeded

Test #6:

score: 0
Memory Limit Exceeded

input:

99999 99998
1 5026 18575 27178 90423
3 30623 1 1
3 76936 1 1
1 77021 95683 84664 24734
1 46085 74886 40512 11266
3 5048 8594 22468
1 53318 77721 97151 70784
1 70645 91192 37556 13013
1 56752 56940 91812 62887
1 7928 34576 87339 69404
3 74875 32807 100970
3 22338 17221 25771
3 21421 20602 57957
3 717...

output:

0
0
1254619125
4366274868
593473604
2592655824
3657975552
5652513833
110091352
1226646296
1989326852
763582808
8205318671
1659086055
3012598941
20085582585
3242801176
17381308704
24555397019
4722824224
20308857160
899316516
38935050954
988382364
13341823621
11397759491
2449683584
5875277101
80572355...

result:


Subtask #3:

score: 0
Memory Limit Exceeded

Test #12:

score: 16
Accepted
time: 146ms
memory: 249144kb

input:

100000 99993
1 47773 70467 16065 1
2 52349 78446 2304
3 40821 1 1
1 40216 93069 78144 1
1 41089 43671 76025 1
2 35263 68629 31066
3 79881 13534 57327
3 5556 1 1
2 21962 38192 1
1 664 58116 9417 1
3 28089 6039 7989
2 88500 90302 9946
3 63215 49410 60770
2 11069 89527 57581
2 70303 97603 12363
1 3420 ...

output:

0
43794
0
1951
11361
129
898
29245
7969
1947
34972
16405
59952
123666
24537
68209
34537
0
32225
37527
0
31810
16824
96178
14285
300941
57614
1602
129470
61935
4068
114182
17609
152949
26099
179359
250368
4796
183349
125791
17414
61871
42058
0
2698
183297
23029
54464
0
26259
204595
35604
0
0
18437
29...

result:

ok 33281 numbers

Test #13:

score: 0
Accepted
time: 193ms
memory: 250444kb

input:

100000 99999
3 11279 1 1
1 21196 82827 47041 1
2 58608 97529 1
2 22065 32528 37154
1 2138 16260 96858 1
1 25755 42875 82334 1
1 31799 48594 28327 1
3 58271 16371 33060
1 9407 50398 53680 1
2 40505 54132 176725
2 4626 22919 41250
2 28476 63110 133245
2 501 87564 1
2 5927 27401 96494
2 27254 64078 1
2...

output:

0
16690
27551
1442
4671
0
35160
4953
1559
3430
1768
0
0
11628
0
0
2495
13673
0
0
162093
135864
330
17312
0
29074
0
0
0
33641
51926
7051
0
0
42277
0
44110
543
12418
51322
9338
89794
9387
44052
43969
170272
42203
209676
5275
15969
11537
29757
26609
8288
33600
0
21384
48804
75598
11624
67508
10170
1751...

result:

ok 33467 numbers

Test #14:

score: -16
Memory Limit Exceeded

input:

99993 99998
3 67041 1 1
3 6929 1 1
2 17524 32038 1
2 61604 73005 1
3 89616 1 1
2 40031 62338 1
3 58255 1 1
1 13009 67563 20939 1
1 73959 97229 47418 1
2 60834 61638 3740
2 29078 66369 1909
3 20355 4984 7284
2 75885 86625 3998
1 58692 90189 3242 1
3 99600 1 1
1 4102 8018 16478 1
3 53676 3918 8517
3 6...

output:

0
0
0
0
2301
0
4600
1472
56471
13213
0
143912
24988
0
59240
0
0
65385
5137
154745
70944
42704
209563
9676
121308
24627
52979
49278
37462
16444
0
1611
409040
392695
111628
265718
65783
55560
11142
45479
32621
118811
0
27594
239805
284844
19955
220309
8044
161759
1982
53200
41530
102413
43466
28624
17...

result:


Subtask #4:

score: 0
Memory Limit Exceeded

Test #17:

score: 24
Accepted
time: 159ms
memory: 249384kb

input:

99999 99996
3 77889 1 10000000000
1 6316 86327 89644 386
3 9260 1 10000000000
2 2603 47234 69717
2 20260 73011 19290
2 62477 81233 26127
1 50140 68508 37004 98794
2 14449 22788 16063
1 43860 84932 50375 21777
1 67345 94584 28202 66610
2 661 68654 1
1 14411 94422 82738 61196
1 16563 94416 4920 38408
...

output:

0
34602584
0
0
27739639583
1363823412
0
1902514434
1902514434
2147553884
1902514434
15794375094
0
4192446657
15797478185
13141921145
0
6351944090
5775183021
363222594
1995572111
2193350882
0
6843261316
5508935691
250667843
0
14181223499
7734049978
21958753162
12852564544
4496343819
15011219087
11331...

result:

ok 33196 numbers

Test #18:

score: 0
Accepted
time: 160ms
memory: 249576kb

input:

99993 100000
3 61460 1 10000000000
1 24890 92871 3803 26680
1 13860 37123 61687 5252
1 8370 24754 70468 14033
3 89253 1 10000000000
3 19857 1 10000000000
1 46250 80211 68621 64496
2 51133 69614 60852
1 6552 42728 61410 66775
3 16111 1 10000000000
3 48406 1 10000000000
2 46319 62460 3834
3 11455 1 10...

output:

0
101464040
1312857568
5413510318
4527244056
5089530194
4526096914
0
4475006240
7393292878
6354306906
5962661320
1073478334
14785061024
124598326
5273378126
3143834350
5315386486
567431731
3354264361
0
8452414800
16197376342
15594421332
7644906667
10259594309
15786872317
21575834611
25614641754
0
56...

result:

ok 33334 numbers

Test #19:

score: -24
Memory Limit Exceeded

input:

99998 99996
3 40534 1 10000000000
1 89230 99016 8691 49307
1 73075 80610 27269 1760
1 80632 96125 13027 41376
1 55057 71990 82693 44377
2 11566 27301 1
2 23704 47061 1
1 67323 97867 14275 31136
1 11736 72566 78826 36301
3 70013 1 10000000000
1 23701 76122 6240 56626
2 71627 75885 1100
3 852 1 100000...

output:

0
6975596287
0
0
2144844585
6718561947
6718561947
2158130751
2917409114
3686398232
3317159253
1336852308
8373494196
2102154609
2709470190
1740124736
7659185913
1508488055
4242893725
8408091078
11875396012
18171183033
0
14595335642
18243076995
18521970659
18538979218
18538979218
20876408549
136521304...

result:


Subtask #5:

score: 0
Skipped

Dependency #1:

100%
Accepted

Dependency #2:

0%