QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#318371#6549. Two Missing Numbersduongnc0000 1ms3964kbC++205.7kb2024-01-31 09:21:432024-01-31 09:21:44

Judging History

你现在查看的是最新测评结果

  • [2024-01-31 09:21:44]
  • 评测
  • 测评结果:0
  • 用时:1ms
  • 内存:3964kb
  • [2024-01-31 09:21:43]
  • 提交

answer

/*
#pragma GCC optimize("Ofast,unroll-loops")
#pragma GCC target("avx2,fma,bmi,bmi2,sse4.2,popcnt,lzcnt")
*/

#include <bits/stdc++.h>
#define taskname ""
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define i64 long long
#define u64 unsigned long long
#define pb push_back
#define ff first
#define ss second
#define isz(x) (int)x.size()
using namespace std;

const int mxN = 2e5 + 5;
const int mod = 1e9 + 7;
const i64 oo = 1e18;

#define REP(i, x) for (int i = 0; i < x; ++i)
namespace NIMBER {

using ULL = unsigned long long;

unsigned mul_table[256][256];
unsigned sqrt_table[256];
unsigned inverse_table[256];
unsigned quadratic_equation_b1_table[128]; // even solutions;

bool _auto_init() {
    mul_table[1][1] = 1;
    for (int t=1; t<=4; t+=t) {
    REP (xh, 1<<t) REP (yh, 1<<t) {
        unsigned xhyhH = mul_table[1<<(t-1)][mul_table[xh][yh]];
        REP (xl, 1<<t) REP (yl, 1<<t) {
        mul_table[xh<<t|xl][yh<<t|yl] =
            (mul_table[xh^xl][yh^yl]^mul_table[xl][yl])<<t ^ mul_table[xl][yl] ^ xhyhH;
        }
    }
    }
    REP (x, 256) sqrt_table[mul_table[x][x]] = x;
    REP (x, 256) REP (y, 256) if (mul_table[x][y] == 1u) inverse_table[x] = y;
    for (int x=0; x<256; x+=2) quadratic_equation_b1_table[mul_table[x][x] ^ x] = x;
    return true;
}
bool _auto_init_done = _auto_init();

int middle(ULL x) {
    if ((x>>8) == 0) return 4;
    if ((x>>16) == 0) return 8;
    if ((x>>32) == 0) return 16;
    return 32;
}

ULL mulp2(ULL x, ULL y) {
    assert(y && (y&(y-1u)) == 0); // assert y = 2^i;
    int p = middle(x|y);
    if (p == 4) return mul_table[x][y];
    ULL mask = ~0u>>(32-p);
    ULL xh = x >> p;
    ULL xl = x & mask;
    ULL yh = y >> p;
    ULL yl = y & mask;
    if (yh) {
    return (mulp2(xh^xl, yh)<<p) ^ mulp2(mulp2(xh, yh), 1u<<(p-1));
    } else {
    return (mulp2(xh, yl)<<p) ^ mulp2(xl, yl);
    }
}

ULL mul(ULL x, ULL y) {
    int p = middle(x|y);
    if (p == 4) return mul_table[x][y];
    ULL mask = ~0u>>(32-p);
    ULL xh = x >> p;
    ULL xl = x & mask;
    ULL yh = y >> p;
    ULL yl = y & mask;
    ULL z0 = mul(xl, yl);
    ULL z1 = mul(xh^xl, yh^yl);
    ULL z2 = mul(xh, yh);
    ULL z3 = mulp2(z2, 1u<<(p-1));
    return ((z0^z1)<<p) ^ z3 ^ z0;
}

ULL sq(ULL x) {
    int p = middle(x);
    if (p == 4) return mul_table[x][x];
    ULL mask = ~0u>>(32-p);
    ULL xh = x >> p;
    ULL xl = x & mask;
    ULL z = sq(xh);
    return (z<<p) ^ mulp2(z, 1u<<(p-1)) ^ sq(xl);
}

ULL sqrt(ULL x) {
    int p = middle(x);
    if (p == 4) return sqrt_table[x];
    ULL mask = ~0u>>(32-p);
    ULL xh = x >> p;
    ULL xl = x & mask;
    return (sqrt(xh)<<p) ^ sqrt(mulp2(xh, 1u<<(p-1)) ^ xl);
}

ULL power(ULL x, ULL y) {
    ULL ret = (y&1? x: 1);
    for (y>>=1; y; y>>=1) {
    x = sq(x);
    if (y&1) ret = mul(ret, x);
    }
    return ret;
}

ULL slow_inverse(ULL x) {
    if (x>>32) return power(x, -2ULL);
    return power(x, (1ULL<<32)-2ULL);
}

ULL inverse(ULL x) {
    int p = middle(x);
    if (p == 4) return inverse_table[x];
    ULL mask = ~0u>>(32-p);
    ULL xh = x >> p;
    ULL xl = x & mask;
    ULL det = mul(xl, xh^xl) ^ mulp2(sq(xh), 1u<<(p-1));
    ULL inv_det = inverse(det);
    return (mul(inv_det, xh)<<p) ^ mul(inv_det, xh^xl);
}

// find x: xx + x = c;
// answer: x, x+1;
ULL quadratic_equation_b1(ULL c) {
    assert(~c>>63&1); // assert c < 2^{63};
    int p = middle(c<<1);
    if (p == 4) return quadratic_equation_b1_table[c];
    ULL mask = ~0u>>(32-p);
    ULL H = 1u<<(p-1);
    ULL ch = c >> p;
    ULL cl = c & mask;
    ULL xh = quadratic_equation_b1(ch);
    ULL z = mulp2(sq(xh), H);
    if ((z ^ cl) & H) { xh ^= 1; z ^= H; }
    ULL xl = quadratic_equation_b1(z ^ cl);
    return (xh<<p) ^ xl;
}

// find x: xx + bx = c;
// answer: x, x+b;
ULL quadratic_equation(ULL b, ULL c) {
    if (b == 0) return sqrt(c);
    ULL d = (b == 1? c: mul(c, inverse(sq(b))));
    assert(~d>>63&1); // assert c/(b^2) < 2^{63};
    ULL x = quadratic_equation_b1(d);
    return (b == 1? x: mul(b, x));
}
};

int q, n;
u64 x, y;

void solve() {
    cin >> q >> n;
    if (q == 1) {
        for (int i = 1; i <= n; ++i) {
            int val; cin >> val;
            x ^= val, y ^= NIMBER::mul(NIMBER::mul(val, val), val);
            // cout << NIMBER::mul(NIMBER::mul(val, val), val) << endl;
        }
        cout << x << " " << y << endl;
    }
    else {
        cin >> x >> y;
        for (int i = 1; i <= n; ++i) {
            int val; cin >> val;
            x ^= val, y ^= NIMBER::mul(NIMBER::mul(val, val), val);
        }
        y = NIMBER::mul(y, NIMBER::inverse(x));
        u64 res1 = NIMBER::quadratic_equation(x, (NIMBER::mul(x, x) ^ y));
        u64 res2 = x ^ res1;
        cout << res1 << " " << res2 << endl;
        // cout << (res1 ^ res2) << " " << (NIMBER::mul(res1, NIMBER::mul(res1, res1)) ^ NIMBER::mul(res2, NIMBER::mul(res2, res2))) << endl;
    }
}

signed main() {

#ifndef CDuongg
    if(fopen(taskname".inp", "r"))
        assert(freopen(taskname".inp", "r", stdin)), assert(freopen(taskname".out", "w", stdout));
#else
    freopen("bai3.inp", "r", stdin);
    freopen("bai3.out", "w", stdout);
    auto start = chrono::high_resolution_clock::now();
#endif

    ios_base::sync_with_stdio(false);
    cin.tie(nullptr);
    int t = 1; //cin >> t;
    while(t--) solve();

#ifdef CDuongg
   auto end = chrono::high_resolution_clock::now();
   cout << "\n"; for(int i = 1; i <= 100; ++i) cout << '=';
   cout << "\nExecution time: " << chrono::duration_cast<chrono::milliseconds> (end - start).count() << "[ms]" << endl;
   cout << "Check array size pls sir" << endl;
#endif

}

详细

Test #1:

score: 100
Accepted
time: 1ms
memory: 3964kb

First Run Input

1 5
5 1 4 4 5

First Run Output

1 1

Second Run Input

2 3 1 1
9 9 3 

Second Run Output

3 1

result:

ok correct

Test #2:

score: 100
Accepted
time: 1ms
memory: 3904kb

First Run Input

1 1
0

First Run Output

0 0

Second Run Input

2 1 0 0
1

Second Run Output

0 1

result:

ok correct

Test #3:

score: 0
Wrong Answer
time: 1ms
memory: 3848kb

First Run Input

1 1
10625130587464985929

First Run Output

2147483647 2253012815

Second Run Input

2 1 2147483647 2253012815
1167154569617655189

Second Run Output

0 0

result:

wrong answer incorrect, read 0 0 but expected 1167154569617655189 10625130587464985929