QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#290472 | #4856. Puzzle: Patrick's Parabox | ucup-team087# | AC ✓ | 199ms | 41308kb | C++14 | 11.9kb | 2023-12-25 01:55:46 | 2023-12-25 01:55:46 |
Judging History
answer
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using Int = long long;
template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
/*
template <class T> struct Vector : vector<T> {
using vector<T>::vector;
void checkIndex(long long i) const {
const long long sz = this->size();
if (!(0 <= i && i < sz)) {
cerr << "[Vector] Bad index " << i << " (size " << sz << ")" << endl;
cerr << *this << endl;
assert(false);
}
}
T operator[](long long i) const {
checkIndex(i);
return this->at(i);
}
T &operator[](long long i) {
checkIndex(i);
return this->at(i);
}
};
#define vector Vector
//*/
////////////////////////////////////////////////////////////////////////////////
// neighbors of u: [pt[u], pt[u + 1])
struct Graph {
int n;
vector<pair<int, int>> edges;
vector<int> pt;
vector<int> zu;
Graph() : n(0), edges() {}
explicit Graph(int n_) : n(n_), edges() {}
void ae(int u, int v) {
assert(0 <= u); assert(u < n);
assert(0 <= v); assert(v < n);
edges.emplace_back(u, v);
}
void build(bool directed) {
const int edgesLen = edges.size();
pt.assign(n + 1, 0);
if (directed) {
for (int i = 0; i < edgesLen; ++i) {
++pt[edges[i].first];
}
for (int u = 0; u < n; ++u) pt[u + 1] += pt[u];
zu.resize(edgesLen);
for (int i = edgesLen; --i >= 0; ) {
zu[--pt[edges[i].first]] = edges[i].second;
}
} else {
for (int i = 0; i < edgesLen; ++i) {
++pt[edges[i].first];
++pt[edges[i].second];
}
for (int u = 0; u < n; ++u) pt[u + 1] += pt[u];
zu.resize(2 * edgesLen);
for (int i = edgesLen; --i >= 0; ) {
const int u = edges[i].first, v = edges[i].second;
zu[--pt[u]] = v;
zu[--pt[v]] = u;
}
}
}
inline int deg(int u) const {
return pt[u + 1] - pt[u];
}
inline int operator[](int j) const {
return zu[j];
}
friend ostream &operator<<(ostream &os, const Graph &g) {
os << "Graph(n=" << g.n << ";";
for (int u = 0; u < g.n; ++u) {
os << " " << u << ":[";
for (int j = g.pt[u]; j < g.pt[u + 1]; ++j) {
if (j != g.pt[u]) os << ",";
os << g[j];
}
os << "]";
}
os << ")";
return os;
}
};
////////////////////////////////////////////////////////////////////////////////
// gg: bipartite graph between {vertex} and {biconnected component}
// (gg.n - n) biconnected components
// f: DFS forest
struct Biconnected {
int n;
Graph g, f, gg;
Biconnected() : n(0), stackLen(0), zeit(0) {}
explicit Biconnected(int n_) : n(n_), g(n_), stackLen(0), zeit(0) {}
void ae(int u, int v) {
g.ae(u, v);
}
int stackLen;
vector<int> stack;
vector<int> par, rs;
int zeit;
vector<int> dis, fin, low;
void dfs(int u) {
stack[stackLen++] = u;
dis[u] = low[u] = zeit++;
for (int j = g.pt[u]; j < g.pt[u + 1]; ++j) {
const int v = g[j];
if (~dis[v]) {
if (low[u] > dis[v]) low[u] = dis[v];
} else {
f.ae(u, v);
par[v] = u;
rs[v] = rs[u];
dfs(v);
if (low[u] > low[v]) low[u] = low[v];
if (dis[u] == low[v]) {
const int x = gg.n++;
for (; ; ) {
const int w = stack[--stackLen];
gg.ae(w, x);
if (w == v) break;
}
gg.ae(u, x);
}
}
}
fin[u] = zeit;
}
void build() {
g.build(false);
f = Graph(n);
gg = Graph(n);
stack.resize(n);
par.assign(n, -1);
rs.assign(n, -1);
zeit = 0;
dis.assign(n, -1);
fin.assign(n, -1);
low.assign(n, -1);
for (int u = 0; u < n; ++u) if (!~dis[u]) {
stackLen = 0;
rs[u] = u;
dfs(u);
}
f.build(true);
gg.build(false);
}
// Returns true iff u is an articulation point
// <=> # of connected components increases when u is removed.
inline bool isArt(int u) const {
return (gg.deg(u) >= 2);
}
// Returns w s.t. w is a child of u and a descendant of v in the DFS forest.
// Returns -1 instead if v is not a proper descendant of u
// O(log(deg(u))) time
int dive(int u, int v) const {
if (dis[u] < dis[v] && dis[v] < fin[u]) {
int j0 = f.pt[u], j1 = f.pt[u + 1];
for (; j0 + 1 < j1; ) {
const int j = (j0 + j1) / 2;
((dis[f[j]] <= dis[v]) ? j0 : j1) = j;
}
return f[j0];
} else {
return -1;
}
}
// Returns true iff there exists a v-w path when u is removed.
// O(log(deg(u))) time
bool isStillReachable(int u, int v, int w) const {
assert(0 <= u); assert(u < n);
assert(0 <= v); assert(v < n);
assert(0 <= w); assert(w < n);
assert(u != v);
assert(u != w);
if (rs[v] != rs[w]) return false;
if (rs[u] != rs[v]) return true;
const int vv = dive(u, v);
const int ww = dive(u, w);
if (~vv) {
if (~ww) {
return (vv == ww || (dis[u] > low[vv] && dis[u] > low[ww]));
} else {
return (dis[u] > low[vv]);
}
} else {
if (~ww) {
return (dis[u] > low[ww]);
} else {
return true;
}
}
}
};
////////////////////////////////////////////////////////////////////////////////
constexpr int DX[4] = {+1, 0, -1, 0};
constexpr int DY[4] = {0, +1, 0, -1};
constexpr int INF = 1001001001;
constexpr int MAX_V = 400'010;
char buf[MAX_V];
int M, N;
vector<string> A;
int V;
vector<vector<int>> ids;
int to[MAX_V][8];
Biconnected B;
vector<int> ex, dp, DP;
void dfs(int u) {
for (int j = B.f.pt[u]; j < B.f.pt[u + 1]; ++j) {
const int v = B.f[j];
dfs(v);
dp[u] |= dp[v];
}
if (u < V) dp[u] |= ex[u];
}
void DFS(int u) {
const int len = B.f.pt[u + 1] - B.f.pt[u];
vector<int> ls(len + 1, 0), rs(len + 1, 0);
for (int k = 0; k < len; ++k) {
const int v = B.f[B.f.pt[u] + k];
ls[k + 1] = ls[k] | dp[v];
}
for (int k = len; --k >= 0; ) {
const int v = B.f[B.f.pt[u] + k];
rs[k] = dp[v] | rs[k + 1];
}
for (int k = 0; k < len; ++k) {
const int v = B.f[B.f.pt[u] + k];
DP[v] = ls[k] | rs[k + 1];
if (~B.par[u]) DP[v] |= DP[u];
if (u < V) DP[v] |= ex[u];
}
for (int k = 0; k < len; ++k) {
const int v = B.f[B.f.pt[u] + k];
DFS(v);
}
}
int getEx(int u, int v) {
if (B.rs[u] != B.rs[v]) {
return dp[v] | DP[v];
}
const int vv = B.dive(u, v);
return (~vv) ? dp[vv] : DP[u];
}
bool vis[MAX_V][8];
int dist[MAX_V][8];
int main() {
for (int numCases; ~scanf("%d", &numCases); ) { for (int caseId = 1; caseId <= numCases; ++caseId) {
scanf("%d%d", &M, &N);
A.resize(M);
for (int x = 0; x < M; ++x) {
scanf("%s", buf);
A[x] = buf;
}
V = 0;
vector<vector<int>> ids(M, vector<int>(N, -1));
for (int x = 0; x < M; ++x) for (int y = 0; y < N; ++y) if (A[x][y] != '#') {
ids[x][y] = V++;
}
// cerr<<"V = "<<V<<endl;
// cerr<<"ids = "<<endl;for(int x=0;x<M;++x){for(int y=0;y<N;++y){fprintf(stderr,"%2d ",ids[x][y]);}cerr<<endl;}
for (int u = 0; u < V; ++u) {
fill(to[u], to[u] + 8, -1);
}
ex.assign(V, 0);
for (int x = 0; x < M; ++x) for (int y = 0; y < N; ++y) {
const int u = ids[x][y];
if (~u) {
for (int dir = 0; dir < 4; ++dir) {
const int xx = x + DX[dir];
const int yy = y + DY[dir];
if (0 <= xx && xx < M && 0 <= yy && yy < N) {
to[u][dir] = ids[xx][yy];
} else {
ex[u] |= 1 << dir;
}
}
}
}
Biconnected b(V);
for (int u = 0; u < V; ++u) for (int dir = 0; dir < 4; ++dir) {
const int v = to[u][dir];
if (~v && u < v) {
b.ae(u, v);
}
}
b.build();
// cerr<<"b.gg = "<<b.gg<<endl;
B = Biconnected(b.gg.n);
for (const auto &edge : b.gg.edges) {
B.ae(edge.first, edge.second);
}
B.build();
// cerr<<"B.f = "<<B.f<<endl;
dp.assign(B.n, 0);
DP.assign(B.n, 0);
for (int u = 0; u < B.n; ++u) if (!~B.par[u]) dfs(u);
for (int u = 0; u < B.n; ++u) if (!~B.par[u]) DFS(u);
// cerr<<"dp = "<<dp<<endl;
// cerr<<"DP = "<<DP<<endl;
int ents[4];
{
const int x = (M - 1) / 2;
const int y = (N - 1) / 2;
ents[0] = ids[M - 1][y];
ents[1] = ids[x][N - 1];
ents[2] = ids[0][y];
ents[3] = ids[x][0];
}
for (int u = 0; u < V; ++u) for (int h = 4; h < 8; ++h) if (u != ents[h ^ 4]) {
to[u][h] = ents[h ^ 4];
}
deque<int> que;
for (int u = 0; u < V; ++u) {
fill(vis[u], vis[u] + 8, false);
fill(dist[u], dist[u] + 8, INF);
}
{
int u = -1, me = -1;
for (int x = 0; x < M; ++x) for (int y = 0; y < N; ++y) {
if (A[x][y] == 'b') u = ids[x][y];
if (A[x][y] == 'p') me = ids[x][y];
}
// move, exit
const int res = getEx(u, me);
for (int h = 0; h < 8; ++h) if (~to[u][h]) {
if (b.isStillReachable(u, me, to[u][h]) || (res >> h & 1)) {
dist[u][h] = 0;
que.push_back(u << 3 | h);
}
}
}
for (; !que.empty(); ) {
const int u = que.front() >> 3;
const int h = que.front() & 7;
que.pop_front();
if (!vis[u][h]) {
vis[u][h] = true;
const int c = dist[u][h];
// cerr<<c<<": "<<u<<" "<<h<<endl;
auto update = [&](int dc, int v, int hh) -> void {
if (chmin(dist[v][hh], c + dc)) {
if (dc) {
que.push_back(v << 3 | hh);
} else {
que.push_front(v << 3 | hh);
}
}
};
// move
for (int hh = 0; hh < 8; ++hh) if (!vis[u][hh] && ~to[u][hh]) {
if (b.isStillReachable(u, to[u][h], to[u][hh])) {
update(0, u, hh);
}
}
if (h < 4) {
if (~to[u][h ^ 2]) {
// push
update(1, to[u][h ^ 2], h);
} else if (!(ex[u] >> (h ^ 2) & 1) && ~to[u][h ^ 4]) {
// enter
update(0, u, h ^ 4);
}
}
// exit
const int res = getEx(u, to[u][h]);
for (int hh = 0; hh < 4; ++hh) if ((res >> hh & 1) && ~to[u][hh]) {
update(0, u, hh);
}
}
}
int ans = INF;
{
int u = -1, me = -1;
for (int x = 0; x < M; ++x) for (int y = 0; y < N; ++y) {
if (A[x][y] == '-') u = ids[x][y];
if (A[x][y] == '=') me = ids[x][y];
}
for (int h = 0; h < 8; ++h) if (~to[u][h]) {
// move
if (b.isStillReachable(u, to[u][h], me)) {
chmin(ans, dist[u][h]);
}
}
}
printf("%d\n", (ans >= INF) ? -1 : ans);
}
#ifndef LOCAL
break;
#endif
}
return 0;
}
详细
Test #1:
score: 100
Accepted
time: 1ms
memory: 3812kb
input:
3 9 9 ######### #####..-# #..=##.## #.p.##.## ....##.## #...b..## #...##.## #....#### ####.#### 9 9 ######### #.......# #.#####.# #.#=....# ..#....-# ###.p.#.# #.....#b# #.....#.# ####.#### 9 9 ####.#### #....#### #.####.## #.......# #.......# ###.##### #=.b#..## #-..p..## #########
output:
7 4 19
result:
ok 3 number(s): "7 4 19"
Test #2:
score: 0
Accepted
time: 1ms
memory: 3700kb
input:
1 2 2 pb -=
output:
-1
result:
ok 1 number(s): "-1"
Test #3:
score: 0
Accepted
time: 199ms
memory: 3712kb
input:
100000 2 2 -p =b 2 2 b- =p 2 2 -b p= 2 2 -p b= 2 2 p= -b 2 2 b= -p 2 2 =b -p 2 2 b= -p 2 2 -p b= 2 2 b= -p 2 2 p= b- 2 2 pb =- 2 2 p- =b 2 2 -= pb 2 2 =p -b 2 2 p= -b 2 2 -b =p 2 2 =p -b 2 2 =b -p 2 2 =- bp 2 2 -= bp 2 2 bp =- 2 2 =- bp 2 2 =b -p 2 2 bp -= 2 2 -b p= 2 2 =p b- 2 2 b- p= 2 2 pb =- 2 2...
output:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ...
result:
ok 100000 numbers
Test #4:
score: 0
Accepted
time: 13ms
memory: 25444kb
input:
1 500 200 #....#.#.#.##.#..#.#..#......#...#..#...#.#...........#.#.#..#...###..##..#.#.#.....#........#..####..#..#..#####...............#.#......#.##.#..##.........##.###.#....###..#...#.#...#...##..##.#...#. ##..##.....#.##..#.#.###.#....#...#..#.#....##..............##.....#...#....#..##.##...##...
output:
-1
result:
ok 1 number(s): "-1"
Test #5:
score: 0
Accepted
time: 9ms
memory: 25524kb
input:
1 200 500 ...##..#.....#.......##..##.#......#...#.....#.##.##..#...##...##....#..##.##..##..#..........####.......#.#...#....##....#.#..#..##....#..#......###...#.#..#.#..#..#.....#.#......#.........###....#..#.............#......#..#.#..####.#...#..#.#..##...#...##.###....#.####..#......#...#..#.....
output:
-1
result:
ok 1 number(s): "-1"
Test #6:
score: 0
Accepted
time: 25ms
memory: 41308kb
input:
1 100000 2 .. .# .. ## .. .. .. ## .# #. #. ## ## #. ## ## .. #. ## #. .. .. .. ## .# .# .# .. .# .# .# .# ## ## ## ## .. .. #. .# #. .. .# ## ## ## ## .# ## .. .# .. .. #. #. ## #. ## .# #. #. #. ## .# .. .# .# .# ## #. .. .. ## .. #. ## .# .. ## ## .# .# #. ## .. .# #. .. .. #. #. ## .. .# #. #. #...
output:
-1
result:
ok 1 number(s): "-1"
Test #7:
score: 0
Accepted
time: 29ms
memory: 33848kb
input:
1 2 100000 .......##........###.#.#..###.#....##.##.#.#.##..#..##.#.#...##.#...######...#....##..#####.###.##..#####...#....####..#.#.###...####.###..#..#.###..#########...#.#.####..##.#####..#...##.####..#.###..##..##...##...#.##.#.#..##....###..##.#...#......##...#.####.#....##...#.#....#.#.###.##...
output:
-1
result:
ok 1 number(s): "-1"
Test #8:
score: 0
Accepted
time: 44ms
memory: 24988kb
input:
10 19 64 ..#...........#.........#.............#..........#...#....#....# ....#.##......#......#..#........##.......#................#...# ...................#....#....##...#....#...#...#................ #...#....#...#.#....#.#...............#....#.................#.. ...........#......###...#.........
output:
-1 -1 -1 87 87 274 10 17 16 118
result:
ok 10 numbers
Test #9:
score: 0
Accepted
time: 33ms
memory: 14480kb
input:
10 89 145 ........#........#..#.#.................................#..#.....#......#...#...#.#.......#..........................#.#...#.............#....... ..#...#.............#....#...........................#...#....................#.....##..##.......##.....#.#..#...#....#....#.#.#...................
output:
102 259 127 9 50 107 38 16 -1 -1
result:
ok 10 numbers
Test #10:
score: 0
Accepted
time: 52ms
memory: 25764kb
input:
10 102 56 .#..#.............#...#...............#..........#...... .........#..............#.............#...#............. ......#.......................#........................# .#.............##..#..#....#............##.............. .#........#................#....#.#...........#......... ........
output:
117 -1 64 2 74 13 252 -1 -1 -1
result:
ok 10 numbers
Test #11:
score: 0
Accepted
time: 60ms
memory: 18940kb
input:
10 134 115 ...............................#...............#..............##........#.....#.......#...#...............#........ ...........#...#.......#....#.....#...............#.............#..................#......#.........#..........#... .............#.................#....................#.......
output:
31 75 157 45 9 99 47 60 -1 -1
result:
ok 10 numbers
Test #12:
score: 0
Accepted
time: 15ms
memory: 4220kb
input:
1000 3 3 #p= .#. b-. 9 4 p.#. ##.# .#.# .#.b ...# =### ###- ###. .### 4 10 .p..###.=. ##..#..##. .b..##.#.# .##.-.#... 2 12 ....#....#p# ...#-#=..b## 21 33 #.########....#.#..#.#.#..###.#.. .##.##.....##.##.....#..#...###.. ..#####..###...#..#..#.#..##..### .#.#..####..#...###..####.###...# ##.#.#.....
output:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2 ...
result:
ok 1000 numbers
Test #13:
score: 0
Accepted
time: 22ms
memory: 4416kb
input:
1000 20 15 ##.b#.....##.## ##...##...##... .#.#####..#.##. .###......##... .....#.....##.. =.#.#..##.#.#.. .#....#.....#.# #-.....#.....#. ##..###.#.#..#. #..##..#..#.... ..#.#....#..#.. #..##.....###.. .#..#........## ...##.#...#..#. #.p#.###..#..#. ...#.##....#.#. ##...#...###... ...#..###..#..# ....
output:
-1 -1 2 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 -1 -1 -1 2 -1 6 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 14 -1 3 3 5 -1 -1 -1 28 12 -1 17 -1 -1 -1 -1 ...
result:
ok 1000 numbers
Test #14:
score: 0
Accepted
time: 34ms
memory: 4288kb
input:
1000 3 12 ..b##p..#..# .#...=....#- ...#.##.#..# 6 11 ....b..#... .#...#..#.# #.##p.###.# .....=....# ..#-#..##.. ..#.##...#. 9 36 #..........#..#.............#.##.... ..#.......#............##........... ....##.#p.......b...#.......#..#.... ..#...#....#...#.......#...##...#.#. ....###.##........#.#...
output:
-1 -1 16 -1 -1 -1 -1 16 8 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 4 -1 4 4 -1 -1 -1 -1 -1 -1 5 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 3 -1 -1 -1 -1 -1 -1 9 -1 5 -1 -1 11 -1 -1 -1 -1 3 3 16 -1 -1 -1 -1 -1 7 19 -1 -1 -1 -1 35 -1 1 -1 -1 -1 -1 3 18 -1 -1 -1 9 -1 -1 -1 10 -1 4 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 21 -1 -1 ...
result:
ok 1000 numbers
Test #15:
score: 0
Accepted
time: 39ms
memory: 4496kb
input:
1000 8 15 ........#b#...= ...#....#..#... ....#.......#.. ..p-#.#......#. ....##..#..#... .#.#........... #..#..........# .#.....#...#... 4 26 ..............#...#.#..... .....p..#.........#.#....# .#.........#.=.#......##.. .##....b..............#.-. 8 2 .b p. .. -. #= .. #. .. 11 8 ..=..-.. ...###....
output:
-1 -1 -1 10 -1 4 2 6 -1 3 -1 -1 -1 -1 -1 3 -1 -1 -1 -1 4 -1 -1 -1 -1 -1 -1 5 20 49 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 9 -1 3 2 2 -1 -1 -1 -1 5 12 -1 -1 4 -1 8 -1 3 2 -1 -1 -1 -1 1 -1 -1 -1 12 -1 -1 -1 -1 -1 -1 -1 -1 -1 5 -1 -1 -1 -1 2 -1 -1 -1 -1 11 2 7 -1 14 6 -1 -1 -1 4 -1 -1 -1 2 -1 -1 -1 -1 -1 7 -1 -...
result:
ok 1000 numbers
Test #16:
score: 0
Accepted
time: 37ms
memory: 4344kb
input:
1000 12 4 .... ..#. #p.. ##.. .... #=.. .#.# .... .... ..#. .#b. #-.. 31 5 ..... ...#. .#.## ..#.. .#..# #...# ..#.. .#... ..#.. ..... ..... .#b.. #.=.. #..#. ..... ..... ..... ..... ..... ..... #.... ....# ...## ..... ##... #..-. ...#. ..#p. #.... ..... ..... 16 14 .............. .##.###....... ......
output:
-1 15 -1 -1 -1 -1 -1 2 -1 5 4 2 -1 -1 -1 5 3 2 -1 -1 -1 18 10 2 -1 -1 -1 -1 14 -1 -1 -1 -1 -1 10 -1 -1 10 4 -1 -1 -1 -1 -1 3 2 -1 -1 -1 -1 -1 2 1 3 -1 -1 8 -1 -1 19 -1 -1 -1 3 -1 -1 -1 -1 -1 7 -1 -1 1 -1 -1 -1 6 -1 -1 -1 2 1 -1 -1 -1 5 -1 -1 5 -1 2 -1 -1 4 -1 6 4 -1 -1 -1 -1 -1 17 -1 -1 -1 4 -1 -1 -...
result:
ok 1000 numbers