QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#289242 | #7858. Basic Equation Solving | ucup-team087# | AC ✓ | 410ms | 4028kb | C++20 | 23.8kb | 2023-12-23 16:21:49 | 2023-12-23 16:21:50 |
Judging History
answer
#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) \
vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) \
vector<vector<vector<type>>> name( \
h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name( \
a, vector<vector<vector<type>>>( \
b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) \
for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a: A) sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids),
[&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
#endif
#line 1 "library/other/io.hpp"
#define FASTIO
#include <unistd.h>
// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;
struct Pre {
char num[10000][4];
constexpr Pre() : num() {
for (int i = 0; i < 10000; i++) {
int n = i;
for (int j = 3; j >= 0; j--) {
num[i][j] = n % 10 | '0';
n /= 10;
}
}
}
} constexpr pre;
inline void load() {
memcpy(ibuf, ibuf + pil, pir - pil);
pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
pil = 0;
if (pir < SZ) ibuf[pir++] = '\n';
}
inline void flush() {
fwrite(obuf, 1, por, stdout);
por = 0;
}
void rd(char &c) {
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
}
void rd(string &x) {
x.clear();
char c;
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
do {
x += c;
if (pil == pir) load();
c = ibuf[pil++];
} while (!isspace(c));
}
template <typename T>
void rd_real(T &x) {
string s;
rd(s);
x = stod(s);
}
template <typename T>
void rd_integer(T &x) {
if (pil + 100 > pir) load();
char c;
do
c = ibuf[pil++];
while (c < '-');
bool minus = 0;
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (c == '-') { minus = 1, c = ibuf[pil++]; }
}
x = 0;
while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (minus) x = -x;
}
}
void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }
template <class T, class U>
void rd(pair<T, U> &p) {
return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
rd(x);
rd_tuple<N + 1>(t);
}
}
template <class... T>
void rd(tuple<T...> &tpl) {
rd_tuple(tpl);
}
template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
for (auto &d: x) rd(d);
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
rd(h), read(t...);
}
void wt(const char c) {
if (por == SZ) flush();
obuf[por++] = c;
}
void wt(const string s) {
for (char c: s) wt(c);
}
void wt(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) wt(s[i]);
}
template <typename T>
void wt_integer(T x) {
if (por > SZ - 100) flush();
if (x < 0) { obuf[por++] = '-', x = -x; }
int outi;
for (outi = 96; x >= 10000; outi -= 4) {
memcpy(out + outi, pre.num[x % 10000], 4);
x /= 10000;
}
if (x >= 1000) {
memcpy(obuf + por, pre.num[x], 4);
por += 4;
} else if (x >= 100) {
memcpy(obuf + por, pre.num[x] + 1, 3);
por += 3;
} else if (x >= 10) {
int q = (x * 103) >> 10;
obuf[por] = q | '0';
obuf[por + 1] = (x - q * 10) | '0';
por += 2;
} else
obuf[por++] = x | '0';
memcpy(obuf + por, out + outi + 4, 96 - outi);
por += 96 - outi;
}
template <typename T>
void wt_real(T x) {
ostringstream oss;
oss << fixed << setprecision(15) << double(x);
string s = oss.str();
wt(s);
}
void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }
template <class T, class U>
void wt(const pair<T, U> val) {
wt(val.first);
wt(' ');
wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { wt(' '); }
const auto x = std::get<N>(t);
wt(x);
wt_tuple<N + 1>(t);
}
}
template <class... T>
void wt(tuple<T...> tpl) {
wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
template <class T>
void wt(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
wt(head);
if (sizeof...(Tail)) wt(' ');
print(forward<Tail>(tail)...);
}
// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define U32(...) \
u32 __VA_ARGS__; \
read(__VA_ARGS__)
#define U64(...) \
u64 __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"
#line 2 "library/ds/unionfind/unionfind.hpp"
struct UnionFind {
int n, n_comp;
vc<int> dat; // par or (-size)
UnionFind(int n = 0) { build(n); }
void build(int m) {
n = m, n_comp = m;
dat.assign(n, -1);
}
void reset() { build(n); }
int operator[](int x) {
while (dat[x] >= 0) {
int pp = dat[dat[x]];
if (pp < 0) { return dat[x]; }
x = dat[x] = pp;
}
return x;
}
ll size(int x) {
x = (*this)[x];
return -dat[x];
}
bool merge(int x, int y) {
x = (*this)[x], y = (*this)[y];
if (x == y) return false;
if (-dat[x] < -dat[y]) swap(x, y);
dat[x] += dat[y], dat[y] = x, n_comp--;
return true;
}
};
#line 1 "library/enumerate/product.hpp"
// [0, A0) x [0, A1) x ...
template <typename F>
void enumerate_product(vc<int> A, F query) {
int N = len(A);
auto dfs = [&](auto& dfs, vc<int>& p) -> void {
int n = len(p);
if (n == N) return query(p);
FOR(x, A[n]) {
p.eb(x);
dfs(dfs, p);
p.pop_back();
}
};
vc<int> p;
dfs(dfs, p);
}
#line 6 "main.cpp"
#line 2 "library/mod/modint_common.hpp"
struct has_mod_impl {
template <class T>
static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {};
template <typename mint>
mint inv(int n) {
static const int mod = mint::get_mod();
static vector<mint> dat = {0, 1};
assert(0 <= n);
if (n >= mod) n %= mod;
while (len(dat) <= n) {
int k = len(dat);
int q = (mod + k - 1) / k;
dat.eb(dat[k * q - mod] * mint::raw(q));
}
return dat[n];
}
template <typename mint>
mint fact(int n) {
static const int mod = mint::get_mod();
assert(0 <= n && n < mod);
static vector<mint> dat = {1, 1};
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat)));
return dat[n];
}
template <typename mint>
mint fact_inv(int n) {
static vector<mint> dat = {1, 1};
if (n < 0) return mint(0);
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat)));
return dat[n];
}
template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
return (mint(1) * ... * fact_inv<mint>(xs));
}
template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}
template <typename mint>
mint C_dense(int n, int k) {
static vvc<mint> C;
static int H = 0, W = 0;
auto calc = [&](int i, int j) -> mint {
if (i == 0) return (j == 0 ? mint(1) : mint(0));
return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
};
if (W <= k) {
FOR(i, H) {
C[i].resize(k + 1);
FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
}
W = k + 1;
}
if (H <= n) {
C.resize(n + 1);
FOR(i, H, n + 1) {
C[i].resize(W);
FOR(j, W) { C[i][j] = calc(i, j); }
}
H = n + 1;
}
return C[n][k];
}
template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
assert(n >= 0);
if (k < 0 || n < k) return 0;
if constexpr (dense) return C_dense<mint>(n, k);
if constexpr (!large) return multinomial<mint>(n, k, n - k);
k = min(k, n - k);
mint x(1);
FOR(i, k) x *= mint(n - i);
return x * fact_inv<mint>(k);
}
template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
assert(n >= 0);
assert(0 <= k && k <= n);
if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
return mint(1) / C<mint, 1>(n, k);
}
// [x^d](1-x)^{-n}
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
assert(n >= 0);
if (d < 0) return mint(0);
if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
return C<mint, large, dense>(n + d - 1, d);
}
#line 3 "library/mod/modint.hpp"
template <int mod>
struct modint {
static constexpr u32 umod = u32(mod);
static_assert(umod < u32(1) << 31);
u32 val;
static modint raw(u32 v) {
modint x;
x.val = v;
return x;
}
constexpr modint() : val(0) {}
constexpr modint(u32 x) : val(x % umod) {}
constexpr modint(u64 x) : val(x % umod) {}
constexpr modint(u128 x) : val(x % umod) {}
constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){};
constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){};
constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){};
bool operator<(const modint &other) const { return val < other.val; }
modint &operator+=(const modint &p) {
if ((val += p.val) >= umod) val -= umod;
return *this;
}
modint &operator-=(const modint &p) {
if ((val += umod - p.val) >= umod) val -= umod;
return *this;
}
modint &operator*=(const modint &p) {
val = u64(val) * p.val % umod;
return *this;
}
modint &operator/=(const modint &p) {
*this *= p.inverse();
return *this;
}
modint operator-() const { return modint::raw(val ? mod - val : u32(0)); }
modint operator+(const modint &p) const { return modint(*this) += p; }
modint operator-(const modint &p) const { return modint(*this) -= p; }
modint operator*(const modint &p) const { return modint(*this) *= p; }
modint operator/(const modint &p) const { return modint(*this) /= p; }
bool operator==(const modint &p) const { return val == p.val; }
bool operator!=(const modint &p) const { return val != p.val; }
modint inverse() const {
int a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
return modint(u);
}
modint pow(ll n) const {
assert(n >= 0);
modint ret(1), mul(val);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
static constexpr int get_mod() { return mod; }
// (n, r), r は 1 の 2^n 乗根
static constexpr pair<int, int> ntt_info() {
if (mod == 120586241) return {20, 74066978};
if (mod == 167772161) return {25, 17};
if (mod == 469762049) return {26, 30};
if (mod == 754974721) return {24, 362};
if (mod == 880803841) return {23, 211};
if (mod == 943718401) return {22, 663003469};
if (mod == 998244353) return {23, 31};
if (mod == 1045430273) return {20, 363};
if (mod == 1051721729) return {20, 330};
if (mod == 1053818881) return {20, 2789};
return {-1, -1};
}
static constexpr bool can_ntt() { return ntt_info().fi != -1; }
};
#ifdef FASTIO
template <int mod>
void rd(modint<mod> &x) {
fastio::rd(x.val);
x.val %= mod;
// assert(0 <= x.val && x.val < mod);
}
template <int mod>
void wt(modint<mod> x) {
fastio::wt(x.val);
}
#endif
using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
#line 8 "main.cpp"
using mint = modint998;
mint solve_connedted(int N, vc<array<int, 10>> can, vc<pair<int, int>> edge) {
UNIQUE(edge);
vc<mint> dp(1 << N, mint(0));
dp[0] = 1;
int full = (1 << N) - 1;
vc<int> OK(1 << N);
FOR(s, 1 << N) {
int ng = s;
for (auto& [a, b]: edge) {
if (!(s >> a & 1)) ng |= 1 << b;
}
OK[s] = full - ng;
}
FOR(x, 10) {
// 使える点の集合
int ok = 0;
FOR(i, N) {
if (can[i][x]) ok |= 1 << i;
}
vc<mint> newdp(1 << N, mint(0));
FOR(s, 1 << N) {
int can_add = ok & OK[s];
can_add &= (full - s);
FOR_subset(t, can_add) { newdp[s + t] += dp[s]; }
}
swap(dp, newdp);
}
return dp.back();
}
mint solve_sub(vc<pair<char, char>> EQ, vc<pair<char, char>> LESS) {
int K = 26;
vc<int> new_idx(K, -1);
int n;
{
// まず、文字と文字をマージして成分になおす
UnionFind uf(K);
for (auto& [a, b]: EQ) {
if ('0' <= a && a <= '9') continue;
if ('0' <= b && b <= '9') continue;
int x = a - 'A';
int y = b - 'A';
uf.merge(x, y);
}
n = uf.n_comp;
int p = 0;
FOR(i, K) if (uf[i] == i) new_idx[i] = p++;
FOR(i, K) new_idx[i] = new_idx[uf[i]];
}
// 数字と数字の比較
for (auto& [a, b]: EQ) {
if ('A' <= a && a <= 'Z') continue;
if ('A' <= b && b <= 'Z') continue;
if (a != b) return mint(0);
}
for (auto& [a, b]: LESS) {
if ('A' <= a && a <= 'Z') continue;
if ('A' <= b && b <= 'Z') continue;
if (a >= b) return mint(0);
}
// 文字と値の比較を処理
// 各連結成分に対して許容される値の集合
vc<array<int, 10>> can(n);
FOR(i, n) FOR(x, 10) can[i][x] = 1;
for (auto& [a, b]: EQ) {
bool ch_a = ('A' <= a && a <= 'Z');
bool ch_b = ('A' <= b && b <= 'Z');
if (!ch_a) {
swap(a, b);
swap(ch_a, ch_b);
}
if (ch_a && !ch_b) {
int k = new_idx[a - 'A'];
int x = b - '0';
FOR(i, 10) if (i != x) can[k][i] = 0;
}
}
for (auto& [a, b]: LESS) {
bool ch_a = ('A' <= a && a <= 'Z');
bool ch_b = ('A' <= b && b <= 'Z');
if (ch_a && !ch_b) {
int k = new_idx[a - 'A'];
int x = b - '0';
// i < x
FOR(i, 10) if (i >= x) can[k][i] = 0;
}
if (!ch_a && ch_b) {
int k = new_idx[b - 'A'];
int x = a - '0';
// x < i
FOR(i, 10) if (x >= i) can[k][i] = 0;
}
}
// 文字と文字の比較
// 成分と成分の比較になおす
vc<pair<int, int>> dat;
for (auto [a, b]: LESS) {
if ('0' <= a && a <= '9') continue;
if ('0' <= b && b <= '9') continue;
int x = new_idx[a - 'A'];
int y = new_idx[b - 'A'];
if (x == y) return 0;
dat.eb(x, y);
}
UNIQUE(dat);
// dat を辺として連結成分に分ける
int N = n;
UnionFind uf(N);
for (auto& [a, b]: dat) uf.merge(a, b);
vvc<int> vs(N);
FOR(i, N) vs[uf[i]].eb(i);
mint ANS = 1;
vc<int> NEW_IDX(N, -1);
for (auto& V: vs) {
if (V.empty()) continue;
// 連結成分に対する条件を作り直して~
vc<array<int, 10>> CAN = rearrange(can, V);
vc<pair<int, int>> edge;
FOR(i, len(V)) NEW_IDX[V[i]] = i;
for (auto [a, b]: dat) {
if (NEW_IDX[a] == -1 || NEW_IDX[b] == -1) continue;
edge.eb(NEW_IDX[a], NEW_IDX[b]);
}
ANS *= solve_connedted(len(V), CAN, edge);
FOR(i, len(V)) NEW_IDX[V[i]] = -1;
}
return ANS;
}
void solve() {
LL(N);
// 各成分が何と等しいか
vc<pair<char, char>> EQUAL;
// L < R
vc<string> LHS, RHS;
FOR(N) {
STR(S);
int p = -1;
FOR(i, len(S)) {
if (S[i] == '<' || S[i] == '>' || S[i] == '=') {
p = i;
break;
}
}
string A = S.substr(0, p);
string B = S.substr(p + 1);
while (len(A) < len(B)) A = "0" + A;
while (len(B) < len(A)) B = "0" + B;
if (S[p] == '<') { LHS.eb(A), RHS.eb(B); }
if (S[p] == '>') { LHS.eb(B), RHS.eb(A); }
if (S[p] == '=') { FOR(i, len(A)) EQUAL.eb(A[i], B[i]); }
}
// はじめて != となる桁を固定する
// 文字ごとの = 条件と < 条件を列挙する
mint ANS = 0;
vc<int> A;
FOR(i, len(LHS)) { A.eb(len(LHS[i])); }
enumerate_product(A, [&](vc<int> A) -> void {
vc<pair<char, char>> EQ, LE;
EQ = EQUAL;
int N = len(A);
FOR(i, N) {
// prefix は EQUAL
FOR(j, A[i]) { EQ.eb(LHS[i][j], RHS[i][j]); }
// < 条件のあるところ
LE.eb(LHS[i][A[i]], RHS[i][A[i]]);
}
ANS += solve_sub(EQ, LE);
});
print(ANS);
}
signed main() {
solve();
return 0;
}
这程序好像有点Bug,我给组数据试试?
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 3772kb
input:
1 P=NP
output:
766136394
result:
ok single line: '766136394'
Test #2:
score: 0
Accepted
time: 0ms
memory: 3736kb
input:
1 2000CNY>3000USD
output:
0
result:
ok single line: '0'
Test #3:
score: 0
Accepted
time: 0ms
memory: 3732kb
input:
4 AB>CD E<A BC>FF EF>F1
output:
23645065
result:
ok single line: '23645065'
Test #4:
score: 0
Accepted
time: 0ms
memory: 3612kb
input:
2 BC>DD BD<EA
output:
27271695
result:
ok single line: '27271695'
Test #5:
score: 0
Accepted
time: 0ms
memory: 3740kb
input:
3 CE>ED CC>BA BB<AC
output:
426829091
result:
ok single line: '426829091'
Test #6:
score: 0
Accepted
time: 6ms
memory: 3752kb
input:
10 KG<EI EJ>DA EB<IH EB>JG KF<CF JC>FC IC<BJ FI>HH KD>AH AE>GJ
output:
87744507
result:
ok single line: '87744507'
Test #7:
score: 0
Accepted
time: 15ms
memory: 3776kb
input:
10 EK<GM EL<DC DH>IH EF>BL IM<LL EH<JA DJ<AL GL>MB DB>FM AI<HA
output:
665533468
result:
ok single line: '665533468'
Test #8:
score: 0
Accepted
time: 31ms
memory: 3772kb
input:
10 OD<FK FJ>NL NH>KB KM>CA CI>JH CI<AH CE>GI CO<EG FA>HA FA<IJ
output:
878923575
result:
ok single line: '878923575'
Test #9:
score: 0
Accepted
time: 410ms
memory: 3764kb
input:
10 YH>UQ UQ>FD YZ>MK FY<GO YV<QW UV<VJ UZ>EB EQ>LX VP>ZF LZ>TS
output:
867624189
result:
ok single line: '867624189'
Test #10:
score: 0
Accepted
time: 325ms
memory: 3768kb
input:
10 YH<UL UD<FY FK<MU MM<GO GG<QW QJ<VQ VZ<EB EG<LX LZ<ZP ZV<TS
output:
57935948
result:
ok single line: '57935948'
Test #11:
score: 0
Accepted
time: 1ms
memory: 4028kb
input:
6 EDDC>AB5A B<C E9A9B>CACAA DE2>A0D DBCDAC>AED3D5 AAA>BB5
output:
169889581
result:
ok single line: '169889581'
Test #12:
score: 0
Accepted
time: 0ms
memory: 3956kb
input:
9 C<B A>B FDF2<FBDB DB>B4 CF>DA EF4<D1A B8<A5 B3>BF FFA<D5B
output:
0
result:
ok single line: '0'
Test #13:
score: 0
Accepted
time: 7ms
memory: 3748kb
input:
5 SP6<GCT J0RFZ<ZZLUX UDY7<UEVX C1CQ>FXTG SOCT07<MEABU8
output:
603602671
result:
ok single line: '603602671'
Test #14:
score: 0
Accepted
time: 4ms
memory: 3776kb
input:
7 F>M G8F<KC5 F06<E8G H5J<BJE M8CDE<DIGMC AE08>EFI7 DM>CI
output:
821791712
result:
ok single line: '821791712'
Test #15:
score: 0
Accepted
time: 2ms
memory: 3776kb
input:
10 PS1>O9O G76>F8S J<S SB>Y4 WS<VM E<N ZR<CV G8T>XPJ J<A KT<LS
output:
97272892
result:
ok single line: '97272892'
Test #16:
score: 0
Accepted
time: 1ms
memory: 3740kb
input:
4 K1TVV0>TOB4QTH E5U5C9>QGDEGU Q9LW3SK>LWFRP DXUQM=V4N4
output:
467745652
result:
ok single line: '467745652'
Test #17:
score: 0
Accepted
time: 3ms
memory: 3792kb
input:
5 BC5F<AC3F FA4<D48306EDD EFDD>FDABE CF5C<AFDDB FAF<C387
output:
808992671
result:
ok single line: '808992671'
Test #18:
score: 0
Accepted
time: 1ms
memory: 3840kb
input:
1 ABCDEFGHIJKLMNOPQRSTUVWX>BCDEFGHIJKLMNOPQRSTUVWXY
output:
835948861
result:
ok single line: '835948861'
Test #19:
score: 0
Accepted
time: 0ms
memory: 3752kb
input:
3 A=A 00109=109 XX=Z
output:
276262510
result:
ok single line: '276262510'
Test #20:
score: 0
Accepted
time: 0ms
memory: 3660kb
input:
2 ABCDEFGHIJKL=CDEFGHIJKLMN OPQRSTUVWXYZ=RSTUVWXYZOPQ
output:
100000
result:
ok single line: '100000'
Test #21:
score: 0
Accepted
time: 19ms
memory: 3800kb
input:
9 N=A8 TT<QO3G LS>JV TSG>U5F D<A934 FK<HKG O>S1 GT<BBCX SG>S
output:
929594610
result:
ok single line: '929594610'
Test #22:
score: 0
Accepted
time: 0ms
memory: 3784kb
input:
0
output:
673653469
result:
ok single line: '673653469'
Test #23:
score: 0
Accepted
time: 0ms
memory: 3732kb
input:
3 AB<CD AC<BD AD<BC
output:
219041723
result:
ok single line: '219041723'
Extra Test:
score: 0
Extra Test Passed