QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#288905#7864. Random Tree Parkingucup-team987#AC ✓52ms8964kbC++2016.1kb2023-12-23 14:11:302024-11-20 09:57:40

Judging History

你现在查看的是最新测评结果

  • [2024-11-20 09:57:40]
  • 管理员手动重测本题所有得分≥97分的提交记录
  • 测评结果:AC
  • 用时:52ms
  • 内存:8964kb
  • [2024-11-20 07:56:59]
  • 自动重测本题所有获得100分的提交记录
  • 测评结果:97
  • 用时:40ms
  • 内存:8988kb
  • [2024-11-20 07:55:31]
  • hack成功,自动添加数据
  • (/hack/1204)
  • [2023-12-23 14:11:31]
  • 评测
  • 测评结果:100
  • 用时:40ms
  • 内存:9680kb
  • [2023-12-23 14:11:30]
  • 提交

answer

#include<iostream>
#include<vector>
#include<cassert>

#include <cassert>
#include <numeric>
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif


#include <utility>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

struct barrett {
    unsigned int _m;
    unsigned long long im;

    explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    unsigned int umod() const { return _m; }

    unsigned int mul(unsigned int a, unsigned int b) const {

        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b


        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

unsigned long long floor_sum_unsigned(unsigned long long n,
                                      unsigned long long m,
                                      unsigned long long a,
                                      unsigned long long b) {
    unsigned long long ans = 0;
    while (true) {
        if (a >= m) {
            ans += n * (n - 1) / 2 * (a / m);
            a %= m;
        }
        if (b >= m) {
            ans += n * (b / m);
            b %= m;
        }

        unsigned long long y_max = a * n + b;
        if (y_max < m) break;
        n = (unsigned long long)(y_max / m);
        b = (unsigned long long)(y_max % m);
        std::swap(m, a);
    }
    return ans;
}

}  // namespace internal

}  // namespace atcoder


#include <cassert>
#include <numeric>
#include <type_traits>

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder


namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder

using namespace std;
#include<vector>
template<typename T>
struct combination{
	vector<T>fac,ifac;
	combination(size_t N=0):fac(1,1),ifac(1,1)
	{
		make_table(N);
	}
	void make_table(size_t N)
	{
		if(fac.size()>N)return;
		size_t now=fac.size();
		N=max(N,now*2);
		fac.resize(N+1);
		ifac.resize(N+1);
		for(size_t i=now;i<=N;i++)fac[i]=fac[i-1]*i;
		ifac[N]=1/fac[N];
		for(size_t i=N;i-->now;)ifac[i]=ifac[i+1]*(i+1);
	}
	T factorial(size_t n)
	{
		make_table(n);
		return fac[n];
	}
	T invfac(size_t n)
	{
		make_table(n);
		return ifac[n];
	}
	T P(size_t n,size_t k)
	{
		if(n<k)return 0;
		make_table(n);
		return fac[n]*ifac[n-k];
	}
	T C(size_t n,size_t k)
	{
		if(n<k)return 0;
		make_table(n);
		return fac[n]*ifac[n-k]*ifac[k];
	}
	T H(size_t n,size_t k)
	{
		if(n==0)return k==0?1:0;
		return C(n-1+k,k);
	}
};
using mint=atcoder::modint998244353;
combination<mint>C;
int N;
vector<int>G[1<<17];
vector<mint>ret;
int dfs(int u,int d)
{
	vector<mint>cur(d+2);
	for(int i=0;i<=d+1;i++)cur[i]=C.invfac(i);
	int ch=0;
	for(int v:G[u])
	{
		int t=dfs(v,d+1);
		ch+=t;
		for(int j=0;j<ret.size();j++)ret[j]*=C.invfac(t+j);
		for(int i=d+1;i>=0;i--)
		{
			mint t=cur[i];
			cur[i]=mint::raw(0);
			for(int j=0;i+j<=d+1;j++)cur[i+j]+=t*ret[j];
		}
	}
	for(int i=1;i<=d+1;i++)cur[i]*=C.factorial(ch+i);
	ch++;
	cur.erase(cur.begin());
	ret.swap(cur);
	return ch;
}
int main()
{
	ios::sync_with_stdio(false);
	cin.tie(nullptr);
	cin>>N;
	for(int i=1;i<N;i++)
	{
		int p;cin>>p;
		G[p-1].push_back(i);
	}
	dfs(0,0);
	cout<<ret[0].val()<<"\n";
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 1ms
memory: 3564kb

input:

3
1 1

output:

12

result:

ok 1 number(s): "12"

Test #2:

score: 0
Accepted
time: 0ms
memory: 3660kb

input:

3
1 2

output:

16

result:

ok 1 number(s): "16"

Test #3:

score: 0
Accepted
time: 1ms
memory: 3556kb

input:

4
1 2 3

output:

125

result:

ok 1 number(s): "125"

Test #4:

score: 0
Accepted
time: 0ms
memory: 3556kb

input:

8
1 2 3 1 3 4 3

output:

1198736

result:

ok 1 number(s): "1198736"

Test #5:

score: 0
Accepted
time: 0ms
memory: 3628kb

input:

15
1 2 2 2 2 3 3 2 7 7 3 10 3 13

output:

938578089

result:

ok 1 number(s): "938578089"

Test #6:

score: 0
Accepted
time: 1ms
memory: 3560kb

input:

100
1 1 1 3 5 5 5 5 9 9 3 2 11 14 9 8 16 8 18 18 20 10 12 2 22 21 27 28 29 6 2 21 2 20 21 11 16 19 9 25 39 8 14 19 6 38 22 19 25 13 3 27 19 51 23 18 45 30 30 22 24 16 12 61 42 24 3 3 53 40 59 72 6 23 1 64 41 13 71 75 30 64 11 55 70 60 32 84 25 4 69 49 15 42 72 31 71 23 58

output:

426063005

result:

ok 1 number(s): "426063005"

Test #7:

score: 0
Accepted
time: 1ms
memory: 3528kb

input:

500
1 1 3 3 3 4 3 5 2 5 8 4 12 11 8 14 1 12 7 16 7 7 17 10 8 26 7 4 13 21 6 7 20 34 35 24 25 23 25 39 20 30 13 43 43 35 45 34 7 4 11 23 11 43 35 27 6 2 3 11 37 42 27 37 62 42 41 43 63 4 57 17 18 8 11 23 72 74 41 49 76 44 50 81 46 18 45 5 8 88 77 27 35 11 52 18 32 85 57 25 32 22 39 35 43 26 63 7 62 2...

output:

105022837

result:

ok 1 number(s): "105022837"

Test #8:

score: 0
Accepted
time: 1ms
memory: 3688kb

input:

2000
1 1 2 4 4 4 1 5 9 4 5 9 9 4 15 1 11 18 11 2 4 22 10 23 18 15 6 25 25 19 15 28 32 17 29 24 35 11 32 20 25 8 7 12 27 29 40 21 23 47 24 8 6 24 53 43 9 10 48 18 16 16 10 45 42 33 20 27 33 47 41 22 37 4 38 23 8 29 14 54 49 74 60 56 45 32 11 4 58 16 71 29 49 32 31 95 38 2 89 73 91 65 26 12 94 35 1 73...

output:

510693456

result:

ok 1 number(s): "510693456"

Test #9:

score: 0
Accepted
time: 4ms
memory: 4160kb

input:

10000
1 2 1 1 2 1 4 3 5 6 1 8 8 3 2 15 4 14 10 9 9 15 17 5 21 9 11 24 17 20 17 16 4 13 10 10 36 2 8 29 34 40 8 13 27 5 1 18 16 4 40 47 4 8 9 1 54 40 38 41 46 52 31 21 21 14 49 49 46 22 14 59 71 37 30 18 37 30 36 56 24 56 48 17 75 68 68 6 65 87 48 52 8 26 94 89 29 32 40 77 51 6 9 78 1 48 100 69 85 89...

output:

158503783

result:

ok 1 number(s): "158503783"

Test #10:

score: 0
Accepted
time: 52ms
memory: 8852kb

input:

100000
1 1 1 2 4 4 7 8 6 9 7 8 12 10 15 15 9 12 9 16 9 13 11 18 11 8 6 23 22 28 8 29 12 24 14 9 33 5 17 4 33 29 41 19 37 34 19 41 15 21 20 13 36 25 34 38 2 56 33 53 40 36 26 28 34 7 19 66 35 43 52 47 53 32 61 11 55 10 78 75 43 80 71 16 20 68 27 41 80 33 69 50 71 7 5 26 24 78 62 17 76 15 10 11 56 64 ...

output:

937583571

result:

ok 1 number(s): "937583571"

Test #11:

score: 0
Accepted
time: 47ms
memory: 8664kb

input:

100000
1 2 1 2 5 3 5 4 6 8 2 1 6 2 5 5 1 6 12 12 15 11 23 3 4 13 3 22 8 5 13 12 10 9 6 27 37 22 14 24 12 26 15 30 2 27 43 4 47 9 42 5 33 26 13 54 17 32 23 15 34 36 14 49 41 25 14 35 22 35 51 50 17 22 38 54 71 41 69 44 61 18 77 3 78 53 74 70 67 8 18 10 88 2 1 74 36 15 76 62 7 70 89 24 72 77 15 44 49 ...

output:

264669337

result:

ok 1 number(s): "264669337"

Test #12:

score: 0
Accepted
time: 44ms
memory: 8964kb

input:

100000
1 1 3 2 2 6 7 6 3 4 10 1 2 14 12 16 3 2 19 20 3 2 12 17 6 17 16 9 27 18 23 21 2 31 18 13 6 17 39 13 25 18 29 11 42 17 10 34 22 9 33 31 52 45 5 54 43 52 56 4 5 47 63 51 41 54 28 65 31 70 2 63 59 53 53 40 39 5 46 71 13 6 41 31 57 4 82 62 78 59 87 72 92 9 5 69 90 92 19 15 78 41 39 23 12 1 47 49 ...

output:

399299126

result:

ok 1 number(s): "399299126"

Test #13:

score: 0
Accepted
time: 40ms
memory: 8964kb

input:

100000
1 1 1 4 5 5 3 7 6 1 7 8 8 11 11 13 7 7 1 1 13 20 21 22 22 19 8 2 29 28 4 27 8 16 30 4 5 14 21 35 29 32 35 22 14 23 41 24 33 12 31 39 4 40 24 5 38 46 20 23 37 5 27 39 32 41 26 50 33 15 50 40 40 23 52 58 31 16 25 60 36 72 29 33 48 1 82 1 25 57 15 69 5 78 29 81 36 46 97 38 15 7 39 51 19 80 29 77...

output:

58289876

result:

ok 1 number(s): "58289876"

Test #14:

score: 0
Accepted
time: 37ms
memory: 8368kb

input:

100000
1 1 1 1 4 1 7 2 4 8 6 3 2 9 15 15 5 5 7 1 12 15 4 19 7 8 15 21 26 28 13 20 14 21 30 27 21 2 3 14 1 33 33 8 41 25 11 38 35 35 35 5 16 29 16 9 24 39 13 12 3 58 20 44 3 43 53 57 13 23 44 43 14 4 23 69 27 73 22 55 25 64 52 40 71 48 56 56 8 68 27 30 92 46 18 7 58 30 65 69 61 55 38 92 33 102 80 2 2...

output:

861492056

result:

ok 1 number(s): "861492056"

Test #15:

score: 0
Accepted
time: 43ms
memory: 8948kb

input:

100000
1 1 2 3 2 2 5 8 7 4 1 3 5 11 15 2 9 8 19 5 19 11 15 19 19 11 26 3 13 15 30 1 18 28 16 33 9 23 15 2 3 36 7 11 44 31 40 15 46 7 8 5 23 36 22 12 2 28 23 14 11 40 21 18 60 24 32 42 50 57 21 27 60 54 9 63 76 56 22 59 40 41 31 58 27 68 10 45 70 54 46 29 68 6 4 61 11 7 60 56 69 92 69 5 88 71 46 21 7...

output:

528382031

result:

ok 1 number(s): "528382031"

Test #16:

score: 0
Accepted
time: 42ms
memory: 8504kb

input:

100000
1 1 3 1 1 5 4 5 3 3 6 4 1 8 10 15 5 14 5 16 9 13 14 13 8 15 26 17 1 21 11 31 18 16 21 27 14 32 9 27 30 30 3 41 33 26 47 25 26 6 24 15 11 15 6 49 48 25 23 56 3 38 31 28 54 14 17 45 60 64 24 21 14 30 20 30 38 8 13 43 37 11 83 78 75 12 30 66 37 85 24 77 72 71 49 78 88 73 25 68 19 51 79 43 93 21 ...

output:

316789948

result:

ok 1 number(s): "316789948"

Test #17:

score: 0
Accepted
time: 44ms
memory: 8892kb

input:

100000
1 2 1 2 5 4 3 8 5 8 7 6 3 10 15 12 10 4 17 15 16 13 11 1 15 10 4 16 21 11 25 11 15 4 9 21 18 16 17 29 39 3 39 1 34 5 1 14 44 5 15 16 12 15 42 28 45 32 8 33 7 32 61 9 8 34 54 66 59 61 51 51 37 40 30 61 36 36 45 18 75 27 27 45 45 53 50 77 26 89 72 41 15 18 56 53 64 6 34 33 9 90 41 50 8 4 58 101...

output:

846732448

result:

ok 1 number(s): "846732448"

Test #18:

score: 0
Accepted
time: 46ms
memory: 8892kb

input:

100000
1 1 1 3 3 6 5 7 1 3 11 6 3 2 4 4 12 1 6 10 15 8 8 20 24 10 3 5 25 4 10 13 18 30 19 11 9 6 8 24 16 5 17 2 42 33 35 3 26 42 7 42 30 17 6 41 57 53 8 19 41 50 4 16 13 45 28 50 53 22 20 2 9 30 62 25 43 76 2 41 67 74 16 2 43 64 17 28 61 15 35 33 12 60 29 64 51 33 16 18 16 15 45 18 77 40 10 87 70 72...

output:

994347719

result:

ok 1 number(s): "994347719"

Test #19:

score: 0
Accepted
time: 43ms
memory: 8688kb

input:

100000
1 1 1 4 3 3 5 8 8 1 4 9 9 14 6 12 5 3 2 9 14 4 15 11 14 14 12 18 3 22 25 1 23 1 15 8 21 35 31 34 15 23 30 13 32 18 22 33 32 18 36 46 36 27 45 16 4 35 48 12 29 1 59 64 33 12 4 1 53 8 29 16 18 67 75 7 54 18 74 21 55 69 47 54 42 56 2 85 3 90 81 42 15 90 9 41 72 68 43 58 28 87 38 22 39 29 26 44 2...

output:

946042832

result:

ok 1 number(s): "946042832"

Test #20:

score: 0
Accepted
time: 11ms
memory: 5788kb

input:

40000
1 2 2 4 1 6 5 3 3 6 3 3 4 6 10 12 1 18 18 4 11 3 9 14 25 13 14 18 4 3 1 6 13 16 9 17 37 13 38 7 10 36 13 8 22 3 17 1 20 12 33 37 8 10 25 35 41 52 10 35 36 59 20 25 32 62 18 5 3 22 66 13 2 52 38 30 62 18 35 77 51 58 32 34 44 2 70 85 46 2 80 84 67 91 91 80 19 13 42 99 75 36 38 51 62 93 96 37 96 ...

output:

599775439

result:

ok 1 number(s): "599775439"

Extra Test:

score: 0
Extra Test Passed