QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#288677#7864. Random Tree Parkingucup-team1134#AC ✓132ms18616kbC++2325.7kb2023-12-23 11:37:332024-11-20 07:55:53

Judging History

你现在查看的是测评时间为 2024-11-20 07:55:53 的历史记录

  • [2024-11-20 09:56:03]
  • 管理员手动重测本题所有得分≥97分的提交记录
  • 测评结果:AC
  • 用时:148ms
  • 内存:18596kb
  • [2024-11-20 07:55:53]
  • 自动重测本题所有获得100分的提交记录
  • 测评结果:97
  • 用时:132ms
  • 内存:18616kb
  • [2024-11-20 07:55:31]
  • hack成功,自动添加数据
  • (/hack/1204)
  • [2023-12-23 11:37:33]
  • 评测
  • 测评结果:100
  • 用时:119ms
  • 内存:18652kb
  • [2023-12-23 11:37:33]
  • 提交

answer

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return true; } return false; }
template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return true; } return false; }
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define mp make_pair
#define si(x) int(x.size())
const int mod=998244353,MAX=100005,INF=1<<30;

//modint+畳み込み+逆元テーブル

// from: https://gist.github.com/yosupo06/ddd51afb727600fd95d9d8ad6c3c80c9
// (based on AtCoder STL)

#include <algorithm>
#include <array>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {
    
    namespace internal {
        
        int ceil_pow2(int n) {
            int x = 0;
            while ((1U << x) < (unsigned int)(n)) x++;
            return x;
        }
        
        int bsf(unsigned int n) {
#ifdef _MSC_VER
            unsigned long index;
            _BitScanForward(&index, n);
            return index;
#else
            return __builtin_ctz(n);
#endif
        }
        
    }  // namespace internal
    
}  // namespace atcoder



#include <utility>

namespace atcoder {
    
    namespace internal {
        
        constexpr long long safe_mod(long long x, long long m) {
            x %= m;
            if (x < 0) x += m;
            return x;
        }
        
        struct barrett {
            unsigned int _m;
            unsigned long long im;
            
            barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
            
            unsigned int umod() const { return _m; }
            
            unsigned int mul(unsigned int a, unsigned int b) const {
                
                unsigned long long z = a;
                z *= b;
#ifdef _MSC_VER
                unsigned long long x;
                _umul128(z, im, &x);
#else
                unsigned long long x =
                (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
                unsigned int v = (unsigned int)(z - x * _m);
                if (_m <= v) v += _m;
                return v;
            }
        };
        
        constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
            if (m == 1) return 0;
            unsigned int _m = (unsigned int)(m);
            unsigned long long r = 1;
            unsigned long long y = safe_mod(x, m);
            while (n) {
                if (n & 1) r = (r * y) % _m;
                y = (y * y) % _m;
                n >>= 1;
            }
            return r;
        }
        
        constexpr bool is_prime_constexpr(int n) {
            if (n <= 1) return false;
            if (n == 2 || n == 7 || n == 61) return true;
            if (n % 2 == 0) return false;
            long long d = n - 1;
            while (d % 2 == 0) d /= 2;
            for (long long a : {2, 7, 61}) {
                long long t = d;
                long long y = pow_mod_constexpr(a, t, n);
                while (t != n - 1 && y != 1 && y != n - 1) {
                    y = y * y % n;
                    t <<= 1;
                }
                if (y != n - 1 && t % 2 == 0) {
                    return false;
                }
            }
            return true;
        }
        template <int n> constexpr bool is_prime = is_prime_constexpr(n);
        
        constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
            a = safe_mod(a, b);
            if (a == 0) return {b, 0};
            
            long long s = b, t = a;
            long long m0 = 0, m1 = 1;
            
            while (t) {
                long long u = s / t;
                s -= t * u;
                m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b
                
                
                auto tmp = s;
                s = t;
                t = tmp;
                tmp = m0;
                m0 = m1;
                m1 = tmp;
            }
            if (m0 < 0) m0 += b / s;
            return {s, m0};
        }
        
        constexpr int primitive_root_constexpr(int m) {
            if (m == 2) return 1;
            if (m == 167772161) return 3;
            if (m == 469762049) return 3;
            if (m == 754974721) return 11;
            if (m == 998244353) return 3;
            int divs[20] = {};
            divs[0] = 2;
            int cnt = 1;
            int x = (m - 1) / 2;
            while (x % 2 == 0) x /= 2;
            for (int i = 3; (long long)(i)*i <= x; i += 2) {
                if (x % i == 0) {
                    divs[cnt++] = i;
                    while (x % i == 0) {
                        x /= i;
                    }
                }
            }
            if (x > 1) {
                divs[cnt++] = x;
            }
            for (int g = 2;; g++) {
                bool ok = true;
                for (int i = 0; i < cnt; i++) {
                    if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                        ok = false;
                        break;
                    }
                }
                if (ok) return g;
            }
        }
        template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
        
    }  // namespace internal
    
}  // namespace atcoder


#include <cassert>
#include <numeric>
#include <type_traits>

namespace atcoder {
    
    namespace internal {
        
#ifndef _MSC_VER
        template <class T>
        using is_signed_int128 =
        typename std::conditional<std::is_same<T, __int128_t>::value ||
        std::is_same<T, __int128>::value,
        std::true_type,
        std::false_type>::type;
        
        template <class T>
        using is_unsigned_int128 =
        typename std::conditional<std::is_same<T, __uint128_t>::value ||
        std::is_same<T, unsigned __int128>::value,
        std::true_type,
        std::false_type>::type;
        
        template <class T>
        using make_unsigned_int128 =
        typename std::conditional<std::is_same<T, __int128_t>::value,
        __uint128_t,
        unsigned __int128>;
        
        template <class T>
        using is_integral = typename std::conditional<std::is_integral<T>::value ||
        is_signed_int128<T>::value ||
        is_unsigned_int128<T>::value,
        std::true_type,
        std::false_type>::type;
        
        template <class T>
        using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                         std::is_signed<T>::value) ||
        is_signed_int128<T>::value,
        std::true_type,
        std::false_type>::type;
        
        template <class T>
        using is_unsigned_int =
        typename std::conditional<(is_integral<T>::value &&
                                   std::is_unsigned<T>::value) ||
        is_unsigned_int128<T>::value,
        std::true_type,
        std::false_type>::type;
        
        template <class T>
        using to_unsigned = typename std::conditional<
        is_signed_int128<T>::value,
        make_unsigned_int128<T>,
        typename std::conditional<std::is_signed<T>::value,
        std::make_unsigned<T>,
        std::common_type<T>>::type>::type;
        
#else
        
        template <class T> using is_integral = typename std::is_integral<T>;
        
        template <class T>
        using is_signed_int =
        typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
        std::true_type,
        std::false_type>::type;
        
        template <class T>
        using is_unsigned_int =
        typename std::conditional<is_integral<T>::value &&
        std::is_unsigned<T>::value,
        std::true_type,
        std::false_type>::type;
        
        template <class T>
        using to_unsigned = typename std::conditional<is_signed_int<T>::value,
        std::make_unsigned<T>,
        std::common_type<T>>::type;
        
#endif
        
        template <class T>
        using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
        
        template <class T>
        using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
        
        template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
        
    }  // namespace internal
    
}  // namespace atcoder

#include <cassert>
#include <numeric>
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {
    
    namespace internal {
        
        struct modint_base {};
        struct static_modint_base : modint_base {};
        
        template <class T> using is_modint = std::is_base_of<modint_base, T>;
        template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
        
    }  // namespace internal
    
    template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
    struct static_modint : internal::static_modint_base {
        using mint = static_modint;
        
    public:
        static constexpr int mod() { return m; }
        static mint raw(int v) {
            mint x;
            x._v = v;
            return x;
        }
        
        static_modint() : _v(0) {}
        template <class T, internal::is_signed_int_t<T>* = nullptr>
        static_modint(T v) {
            long long x = (long long)(v % (long long)(umod()));
            if (x < 0) x += umod();
            _v = (unsigned int)(x);
        }
        template <class T, internal::is_unsigned_int_t<T>* = nullptr>
        static_modint(T v) {
            _v = (unsigned int)(v % umod());
        }
        static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }
        
        unsigned int val() const { return _v; }
        
        mint& operator++() {
            _v++;
            if (_v == umod()) _v = 0;
            return *this;
        }
        mint& operator--() {
            if (_v == 0) _v = umod();
            _v--;
            return *this;
        }
        mint operator++(int) {
            mint result = *this;
            ++*this;
            return result;
        }
        mint operator--(int) {
            mint result = *this;
            --*this;
            return result;
        }
        
        mint& operator+=(const mint& rhs) {
            _v += rhs._v;
            if (_v >= umod()) _v -= umod();
            return *this;
        }
        mint& operator-=(const mint& rhs) {
            _v -= rhs._v;
            if (_v >= umod()) _v += umod();
            return *this;
        }
        mint& operator*=(const mint& rhs) {
            unsigned long long z = _v;
            z *= rhs._v;
            _v = (unsigned int)(z % umod());
            return *this;
        }
        mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
        
        mint operator+() const { return *this; }
        mint operator-() const { return mint() - *this; }
        
        mint pow(long long n) const {
            assert(0 <= n);
            mint x = *this, r = 1;
            while (n) {
                if (n & 1) r *= x;
                x *= x;
                n >>= 1;
            }
            return r;
        }
        mint inv() const {
            if (prime) {
                assert(_v);
                return pow(umod() - 2);
            } else {
                auto eg = internal::inv_gcd(_v, m);
                assert(eg.first == 1);
                return eg.second;
            }
        }
        
        friend mint operator+(const mint& lhs, const mint& rhs) {
            return mint(lhs) += rhs;
        }
        friend mint operator-(const mint& lhs, const mint& rhs) {
            return mint(lhs) -= rhs;
        }
        friend mint operator*(const mint& lhs, const mint& rhs) {
            return mint(lhs) *= rhs;
        }
        friend mint operator/(const mint& lhs, const mint& rhs) {
            return mint(lhs) /= rhs;
        }
        friend bool operator==(const mint& lhs, const mint& rhs) {
            return lhs._v == rhs._v;
        }
        friend bool operator!=(const mint& lhs, const mint& rhs) {
            return lhs._v != rhs._v;
        }
        
    private:
        unsigned int _v;
        static constexpr unsigned int umod() { return m; }
        static constexpr bool prime = internal::is_prime<m>;
    };
    
    template <int id> struct dynamic_modint : internal::modint_base {
        using mint = dynamic_modint;
        
    public:
        static int mod() { return (int)(bt.umod()); }
        static void set_mod(int m) {
            assert(1 <= m);
            bt = internal::barrett(m);
        }
        static mint raw(int v) {
            mint x;
            x._v = v;
            return x;
        }
        
        dynamic_modint() : _v(0) {}
        template <class T, internal::is_signed_int_t<T>* = nullptr>
        dynamic_modint(T v) {
            long long x = (long long)(v % (long long)(mod()));
            if (x < 0) x += mod();
            _v = (unsigned int)(x);
        }
        template <class T, internal::is_unsigned_int_t<T>* = nullptr>
        dynamic_modint(T v) {
            _v = (unsigned int)(v % mod());
        }
        dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }
        
        unsigned int val() const { return _v; }
        
        mint& operator++() {
            _v++;
            if (_v == umod()) _v = 0;
            return *this;
        }
        mint& operator--() {
            if (_v == 0) _v = umod();
            _v--;
            return *this;
        }
        mint operator++(int) {
            mint result = *this;
            ++*this;
            return result;
        }
        mint operator--(int) {
            mint result = *this;
            --*this;
            return result;
        }
        
        mint& operator+=(const mint& rhs) {
            _v += rhs._v;
            if (_v >= umod()) _v -= umod();
            return *this;
        }
        mint& operator-=(const mint& rhs) {
            _v += mod() - rhs._v;
            if (_v >= umod()) _v -= umod();
            return *this;
        }
        mint& operator*=(const mint& rhs) {
            _v = bt.mul(_v, rhs._v);
            return *this;
        }
        mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
        
        mint operator+() const { return *this; }
        mint operator-() const { return mint() - *this; }
        
        mint pow(long long n) const {
            assert(0 <= n);
            mint x = *this, r = 1;
            while (n) {
                if (n & 1) r *= x;
                x *= x;
                n >>= 1;
            }
            return r;
        }
        mint inv() const {
            auto eg = internal::inv_gcd(_v, mod());
            assert(eg.first == 1);
            return eg.second;
        }
        
        friend mint operator+(const mint& lhs, const mint& rhs) {
            return mint(lhs) += rhs;
        }
        friend mint operator-(const mint& lhs, const mint& rhs) {
            return mint(lhs) -= rhs;
        }
        friend mint operator*(const mint& lhs, const mint& rhs) {
            return mint(lhs) *= rhs;
        }
        friend mint operator/(const mint& lhs, const mint& rhs) {
            return mint(lhs) /= rhs;
        }
        friend bool operator==(const mint& lhs, const mint& rhs) {
            return lhs._v == rhs._v;
        }
        friend bool operator!=(const mint& lhs, const mint& rhs) {
            return lhs._v != rhs._v;
        }
        
    private:
        unsigned int _v;
        static internal::barrett bt;
        static unsigned int umod() { return bt.umod(); }
    };
    template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;
    
    using modint998244353 = static_modint<998244353>;
    using modint1000000007 = static_modint<1000000007>;
    using modint = dynamic_modint<-1>;
    
    namespace internal {
        
        template <class T>
        using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
        
        template <class T>
        using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
        
        template <class> struct is_dynamic_modint : public std::false_type {};
        template <int id>
        struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
        
        template <class T>
        using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
        
    }  // namespace internal
    
}  // namespace atcoder

#include <cassert>
#include <type_traits>
#include <vector>

namespace atcoder {
    
    namespace internal {
        
        template <class mint, internal::is_static_modint_t<mint>* = nullptr>
        void butterfly(std::vector<mint>& a) {
            static constexpr int g = internal::primitive_root<mint::mod()>;
            int n = int(a.size());
            int h = internal::ceil_pow2(n);
            
            static bool first = true;
            static mint sum_e[30];  // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i]
            if (first) {
                first = false;
                mint es[30], ies[30];  // es[i]^(2^(2+i)) == 1
                int cnt2 = bsf(mint::mod() - 1);
                mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
                for (int i = cnt2; i >= 2; i--) {
                    es[i - 2] = e;
                    ies[i - 2] = ie;
                    e *= e;
                    ie *= ie;
                }
                mint now = 1;
                for (int i = 0; i < cnt2 - 2; i++) {
                    sum_e[i] = es[i] * now;
                    now *= ies[i];
                }
            }
            for (int ph = 1; ph <= h; ph++) {
                int w = 1 << (ph - 1), p = 1 << (h - ph);
                mint now = 1;
                for (int s = 0; s < w; s++) {
                    int offset = s << (h - ph + 1);
                    for (int i = 0; i < p; i++) {
                        auto l = a[i + offset];
                        auto r = a[i + offset + p] * now;
                        a[i + offset] = l + r;
                        a[i + offset + p] = l - r;
                    }
                    now *= sum_e[bsf(~(unsigned int)(s))];
                }
            }
        }
        
        template <class mint, internal::is_static_modint_t<mint>* = nullptr>
        void butterfly_inv(std::vector<mint>& a) {
            static constexpr int g = internal::primitive_root<mint::mod()>;
            int n = int(a.size());
            int h = internal::ceil_pow2(n);
            
            static bool first = true;
            static mint sum_ie[30];  // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i]
            if (first) {
                first = false;
                mint es[30], ies[30];  // es[i]^(2^(2+i)) == 1
                int cnt2 = bsf(mint::mod() - 1);
                mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
                for (int i = cnt2; i >= 2; i--) {
                    es[i - 2] = e;
                    ies[i - 2] = ie;
                    e *= e;
                    ie *= ie;
                }
                mint now = 1;
                for (int i = 0; i < cnt2 - 2; i++) {
                    sum_ie[i] = ies[i] * now;
                    now *= es[i];
                }
            }
            
            for (int ph = h; ph >= 1; ph--) {
                int w = 1 << (ph - 1), p = 1 << (h - ph);
                mint inow = 1;
                for (int s = 0; s < w; s++) {
                    int offset = s << (h - ph + 1);
                    for (int i = 0; i < p; i++) {
                        auto l = a[i + offset];
                        auto r = a[i + offset + p];
                        a[i + offset] = l + r;
                        a[i + offset + p] =
                        (unsigned long long)(mint::mod() + l.val() - r.val()) *
                        inow.val();
                    }
                    inow *= sum_ie[bsf(~(unsigned int)(s))];
                }
            }
        }
        
    }  // namespace internal
    
    template <class mint, internal::is_static_modint_t<mint>* = nullptr>
    std::vector<mint> convolution(std::vector<mint> a, std::vector<mint> b) {
        int n = int(a.size()), m = int(b.size());
        if (!n || !m) return {};
        if (std::min(n, m) <= 60) {
            if (n < m) {
                std::swap(n, m);
                std::swap(a, b);
            }
            std::vector<mint> ans(n + m - 1);
            for (int i = 0; i < n; i++) {
                for (int j = 0; j < m; j++) {
                    ans[i + j] += a[i] * b[j];
                }
            }
            return ans;
        }
        int z = 1 << internal::ceil_pow2(n + m - 1);
        a.resize(z);
        internal::butterfly(a);
        b.resize(z);
        internal::butterfly(b);
        for (int i = 0; i < z; i++) {
            a[i] *= b[i];
        }
        internal::butterfly_inv(a);
        a.resize(n + m - 1);
        mint iz = mint(z).inv();
        for (int i = 0; i < n + m - 1; i++) a[i] *= iz;
        return a;
    }
    
    template <unsigned int mod = 998244353,
    class T,
    std::enable_if_t<internal::is_integral<T>::value>* = nullptr>
    std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) {
        int n = int(a.size()), m = int(b.size());
        if (!n || !m) return {};
        
        using mint = static_modint<mod>;
        std::vector<mint> a2(n), b2(m);
        for (int i = 0; i < n; i++) {
            a2[i] = mint(a[i]);
        }
        for (int i = 0; i < m; i++) {
            b2[i] = mint(b[i]);
        }
        auto c2 = convolution(move(a2), move(b2));
        std::vector<T> c(n + m - 1);
        for (int i = 0; i < n + m - 1; i++) {
            c[i] = c2[i].val();
        }
        return c;
    }
    
    std::vector<long long> convolution_ll(const std::vector<long long>& a,
                                          const std::vector<long long>& b) {
        int n = int(a.size()), m = int(b.size());
        if (!n || !m) return {};
        
        static constexpr unsigned long long MOD1 = 754974721;  // 2^24
        static constexpr unsigned long long MOD2 = 167772161;  // 2^25
        static constexpr unsigned long long MOD3 = 469762049;  // 2^26
        static constexpr unsigned long long M2M3 = MOD2 * MOD3;
        static constexpr unsigned long long M1M3 = MOD1 * MOD3;
        static constexpr unsigned long long M1M2 = MOD1 * MOD2;
        static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;
        
        static constexpr unsigned long long i1 =
        internal::inv_gcd(MOD2 * MOD3, MOD1).second;
        static constexpr unsigned long long i2 =
        internal::inv_gcd(MOD1 * MOD3, MOD2).second;
        static constexpr unsigned long long i3 =
        internal::inv_gcd(MOD1 * MOD2, MOD3).second;
        
        auto c1 = convolution<MOD1>(a, b);
        auto c2 = convolution<MOD2>(a, b);
        auto c3 = convolution<MOD3>(a, b);
        
        std::vector<long long> c(n + m - 1);
        for (int i = 0; i < n + m - 1; i++) {
            unsigned long long x = 0;
            x += (c1[i] * i1) % MOD1 * M2M3;
            x += (c2[i] * i2) % MOD2 * M1M3;
            x += (c3[i] * i3) % MOD3 * M1M2;
            long long diff =
            c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1));
            if (diff < 0) diff += MOD1;
            static constexpr unsigned long long offset[5] = {
                0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};
            x -= offset[diff % 5];
            c[i] = x;
        }
        
        return c;
    }
    
}  // namespace atcoder

using mint=atcoder::modint998244353;

mint inv[MAX],fac[MAX],finv[MAX];

void make(){
    
    fac[0]=fac[1]=1;
    finv[0]=finv[1]=1;
    inv[1]=1;
    
    for(int i=2;i<MAX;i++){
        inv[i]=-inv[mod%i]*(mod/i);
        fac[i]=fac[i-1]*i;
        finv[i]=finv[i-1]*inv[i];
    }
}

mint comb(ll a,ll b){
    if(a<b) return 0;
    return fac[a]*finv[b]*finv[a-b];
}

mint perm(ll a,ll b){
    if(a<b) return 0;
    return fac[a]*finv[a-b];
}

vector<mint> manyproduct(vector<vector<mint>> S){
    deque<vector<mint>> deq;
    for(auto a:S) deq.push_back(a);
    while(si(deq)>1){
        auto a=deq.front();deq.pop_front();
        auto b=deq.front();deq.pop_front();
        deq.push_back(atcoder::convolution(a,b));
    }
    return deq[0];
}

vector<int> G[MAX];
int dis[MAX],sz[MAX];

void DFS(int u){
    sz[u]=1;
    for(int to:G[u]){
        dis[to]=dis[u]+1;
        DFS(to);
        sz[u]+=sz[to];
    }
}

vector<mint> dp[MAX];

void solve(int u){
    vector<vector<mint>> deq;
    vector<mint> def;
    for(int i=0;i<=dis[u]+1;i++) def.push_back(finv[i]);
    deq.push_back(def);
    
    for(int to:G[u]){
        solve(to);
        deq.push_back(dp[to]);
    }
    
    auto X=manyproduct(deq);
    
    X.resize(dis[u]+2);
    X.erase(X.begin());
    dp[u]=X;
    //for(auto x:X) cout<<x.val()<<" ";
    //cout<<endl;
}

int main(){
    
    std::ifstream in("text.txt");
    std::cin.rdbuf(in.rdbuf());
    cin.tie(0);
    ios::sync_with_stdio(false);
    
    make();
    
    int N;cin>>N;
    for(int i=1;i<N;i++){
        int p;cin>>p;p--;
        G[p].push_back(i);
    }
    DFS(0);
    
    solve(0);
    
    dp[0][0]*=fac[N];
    
    cout<<dp[0][0].val()<<endl;
}


Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 2ms
memory: 5036kb

input:

3
1 1

output:

12

result:

ok 1 number(s): "12"

Test #2:

score: 0
Accepted
time: 2ms
memory: 5892kb

input:

3
1 2

output:

16

result:

ok 1 number(s): "16"

Test #3:

score: 0
Accepted
time: 2ms
memory: 7084kb

input:

4
1 2 3

output:

125

result:

ok 1 number(s): "125"

Test #4:

score: 0
Accepted
time: 0ms
memory: 4844kb

input:

8
1 2 3 1 3 4 3

output:

1198736

result:

ok 1 number(s): "1198736"

Test #5:

score: 0
Accepted
time: 0ms
memory: 6848kb

input:

15
1 2 2 2 2 3 3 2 7 7 3 10 3 13

output:

938578089

result:

ok 1 number(s): "938578089"

Test #6:

score: 0
Accepted
time: 1ms
memory: 4828kb

input:

100
1 1 1 3 5 5 5 5 9 9 3 2 11 14 9 8 16 8 18 18 20 10 12 2 22 21 27 28 29 6 2 21 2 20 21 11 16 19 9 25 39 8 14 19 6 38 22 19 25 13 3 27 19 51 23 18 45 30 30 22 24 16 12 61 42 24 3 3 53 40 59 72 6 23 1 64 41 13 71 75 30 64 11 55 70 60 32 84 25 4 69 49 15 42 72 31 71 23 58

output:

426063005

result:

ok 1 number(s): "426063005"

Test #7:

score: 0
Accepted
time: 2ms
memory: 6120kb

input:

500
1 1 3 3 3 4 3 5 2 5 8 4 12 11 8 14 1 12 7 16 7 7 17 10 8 26 7 4 13 21 6 7 20 34 35 24 25 23 25 39 20 30 13 43 43 35 45 34 7 4 11 23 11 43 35 27 6 2 3 11 37 42 27 37 62 42 41 43 63 4 57 17 18 8 11 23 72 74 41 49 76 44 50 81 46 18 45 5 8 88 77 27 35 11 52 18 32 85 57 25 32 22 39 35 43 26 63 7 62 2...

output:

105022837

result:

ok 1 number(s): "105022837"

Test #8:

score: 0
Accepted
time: 2ms
memory: 7376kb

input:

2000
1 1 2 4 4 4 1 5 9 4 5 9 9 4 15 1 11 18 11 2 4 22 10 23 18 15 6 25 25 19 15 28 32 17 29 24 35 11 32 20 25 8 7 12 27 29 40 21 23 47 24 8 6 24 53 43 9 10 48 18 16 16 10 45 42 33 20 27 33 47 41 22 37 4 38 23 8 29 14 54 49 74 60 56 45 32 11 4 58 16 71 29 49 32 31 95 38 2 89 73 91 65 26 12 94 35 1 73...

output:

510693456

result:

ok 1 number(s): "510693456"

Test #9:

score: 0
Accepted
time: 10ms
memory: 7456kb

input:

10000
1 2 1 1 2 1 4 3 5 6 1 8 8 3 2 15 4 14 10 9 9 15 17 5 21 9 11 24 17 20 17 16 4 13 10 10 36 2 8 29 34 40 8 13 27 5 1 18 16 4 40 47 4 8 9 1 54 40 38 41 46 52 31 21 21 14 49 49 46 22 14 59 71 37 30 18 37 30 36 56 24 56 48 17 75 68 68 6 65 87 48 52 8 26 94 89 29 32 40 77 51 6 9 78 1 48 100 69 85 89...

output:

158503783

result:

ok 1 number(s): "158503783"

Test #10:

score: 0
Accepted
time: 132ms
memory: 18616kb

input:

100000
1 1 1 2 4 4 7 8 6 9 7 8 12 10 15 15 9 12 9 16 9 13 11 18 11 8 6 23 22 28 8 29 12 24 14 9 33 5 17 4 33 29 41 19 37 34 19 41 15 21 20 13 36 25 34 38 2 56 33 53 40 36 26 28 34 7 19 66 35 43 52 47 53 32 61 11 55 10 78 75 43 80 71 16 20 68 27 41 80 33 69 50 71 7 5 26 24 78 62 17 76 15 10 11 56 64 ...

output:

937583571

result:

ok 1 number(s): "937583571"

Test #11:

score: 0
Accepted
time: 106ms
memory: 17944kb

input:

100000
1 2 1 2 5 3 5 4 6 8 2 1 6 2 5 5 1 6 12 12 15 11 23 3 4 13 3 22 8 5 13 12 10 9 6 27 37 22 14 24 12 26 15 30 2 27 43 4 47 9 42 5 33 26 13 54 17 32 23 15 34 36 14 49 41 25 14 35 22 35 51 50 17 22 38 54 71 41 69 44 61 18 77 3 78 53 74 70 67 8 18 10 88 2 1 74 36 15 76 62 7 70 89 24 72 77 15 44 49 ...

output:

264669337

result:

ok 1 number(s): "264669337"

Test #12:

score: 0
Accepted
time: 120ms
memory: 18304kb

input:

100000
1 1 3 2 2 6 7 6 3 4 10 1 2 14 12 16 3 2 19 20 3 2 12 17 6 17 16 9 27 18 23 21 2 31 18 13 6 17 39 13 25 18 29 11 42 17 10 34 22 9 33 31 52 45 5 54 43 52 56 4 5 47 63 51 41 54 28 65 31 70 2 63 59 53 53 40 39 5 46 71 13 6 41 31 57 4 82 62 78 59 87 72 92 9 5 69 90 92 19 15 78 41 39 23 12 1 47 49 ...

output:

399299126

result:

ok 1 number(s): "399299126"

Test #13:

score: 0
Accepted
time: 109ms
memory: 18092kb

input:

100000
1 1 1 4 5 5 3 7 6 1 7 8 8 11 11 13 7 7 1 1 13 20 21 22 22 19 8 2 29 28 4 27 8 16 30 4 5 14 21 35 29 32 35 22 14 23 41 24 33 12 31 39 4 40 24 5 38 46 20 23 37 5 27 39 32 41 26 50 33 15 50 40 40 23 52 58 31 16 25 60 36 72 29 33 48 1 82 1 25 57 15 69 5 78 29 81 36 46 97 38 15 7 39 51 19 80 29 77...

output:

58289876

result:

ok 1 number(s): "58289876"

Test #14:

score: 0
Accepted
time: 109ms
memory: 17932kb

input:

100000
1 1 1 1 4 1 7 2 4 8 6 3 2 9 15 15 5 5 7 1 12 15 4 19 7 8 15 21 26 28 13 20 14 21 30 27 21 2 3 14 1 33 33 8 41 25 11 38 35 35 35 5 16 29 16 9 24 39 13 12 3 58 20 44 3 43 53 57 13 23 44 43 14 4 23 69 27 73 22 55 25 64 52 40 71 48 56 56 8 68 27 30 92 46 18 7 58 30 65 69 61 55 38 92 33 102 80 2 2...

output:

861492056

result:

ok 1 number(s): "861492056"

Test #15:

score: 0
Accepted
time: 112ms
memory: 17920kb

input:

100000
1 1 2 3 2 2 5 8 7 4 1 3 5 11 15 2 9 8 19 5 19 11 15 19 19 11 26 3 13 15 30 1 18 28 16 33 9 23 15 2 3 36 7 11 44 31 40 15 46 7 8 5 23 36 22 12 2 28 23 14 11 40 21 18 60 24 32 42 50 57 21 27 60 54 9 63 76 56 22 59 40 41 31 58 27 68 10 45 70 54 46 29 68 6 4 61 11 7 60 56 69 92 69 5 88 71 46 21 7...

output:

528382031

result:

ok 1 number(s): "528382031"

Test #16:

score: 0
Accepted
time: 109ms
memory: 17780kb

input:

100000
1 1 3 1 1 5 4 5 3 3 6 4 1 8 10 15 5 14 5 16 9 13 14 13 8 15 26 17 1 21 11 31 18 16 21 27 14 32 9 27 30 30 3 41 33 26 47 25 26 6 24 15 11 15 6 49 48 25 23 56 3 38 31 28 54 14 17 45 60 64 24 21 14 30 20 30 38 8 13 43 37 11 83 78 75 12 30 66 37 85 24 77 72 71 49 78 88 73 25 68 19 51 79 43 93 21 ...

output:

316789948

result:

ok 1 number(s): "316789948"

Test #17:

score: 0
Accepted
time: 109ms
memory: 18196kb

input:

100000
1 2 1 2 5 4 3 8 5 8 7 6 3 10 15 12 10 4 17 15 16 13 11 1 15 10 4 16 21 11 25 11 15 4 9 21 18 16 17 29 39 3 39 1 34 5 1 14 44 5 15 16 12 15 42 28 45 32 8 33 7 32 61 9 8 34 54 66 59 61 51 51 37 40 30 61 36 36 45 18 75 27 27 45 45 53 50 77 26 89 72 41 15 18 56 53 64 6 34 33 9 90 41 50 8 4 58 101...

output:

846732448

result:

ok 1 number(s): "846732448"

Test #18:

score: 0
Accepted
time: 111ms
memory: 17716kb

input:

100000
1 1 1 3 3 6 5 7 1 3 11 6 3 2 4 4 12 1 6 10 15 8 8 20 24 10 3 5 25 4 10 13 18 30 19 11 9 6 8 24 16 5 17 2 42 33 35 3 26 42 7 42 30 17 6 41 57 53 8 19 41 50 4 16 13 45 28 50 53 22 20 2 9 30 62 25 43 76 2 41 67 74 16 2 43 64 17 28 61 15 35 33 12 60 29 64 51 33 16 18 16 15 45 18 77 40 10 87 70 72...

output:

994347719

result:

ok 1 number(s): "994347719"

Test #19:

score: 0
Accepted
time: 112ms
memory: 18004kb

input:

100000
1 1 1 4 3 3 5 8 8 1 4 9 9 14 6 12 5 3 2 9 14 4 15 11 14 14 12 18 3 22 25 1 23 1 15 8 21 35 31 34 15 23 30 13 32 18 22 33 32 18 36 46 36 27 45 16 4 35 48 12 29 1 59 64 33 12 4 1 53 8 29 16 18 67 75 7 54 18 74 21 55 69 47 54 42 56 2 85 3 90 81 42 15 90 9 41 72 68 43 58 28 87 38 22 39 29 26 44 2...

output:

946042832

result:

ok 1 number(s): "946042832"

Test #20:

score: 0
Accepted
time: 44ms
memory: 11084kb

input:

40000
1 2 2 4 1 6 5 3 3 6 3 3 4 6 10 12 1 18 18 4 11 3 9 14 25 13 14 18 4 3 1 6 13 16 9 17 37 13 38 7 10 36 13 8 22 3 17 1 20 12 33 37 8 10 25 35 41 52 10 35 36 59 20 25 32 62 18 5 3 22 66 13 2 52 38 30 62 18 35 77 51 58 32 34 44 2 70 85 46 2 80 84 67 91 91 80 19 13 42 99 75 36 38 51 62 93 96 37 96 ...

output:

599775439

result:

ok 1 number(s): "599775439"

Extra Test:

score: -3
Extra Test Failed : Wrong Answer on 6
time: 2ms
memory: 6900kb

input:

100
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

output:

343740040

result:

wrong answer 1st numbers differ - expected: '214465651', found: '343740040'