QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#285248#7943. LIS on Griducup-team266#WA 5ms3656kbC++147.0kb2023-12-16 17:27:022023-12-16 17:27:02

Judging History

你现在查看的是最新测评结果

  • [2023-12-16 17:27:02]
  • 评测
  • 测评结果:WA
  • 用时:5ms
  • 内存:3656kb
  • [2023-12-16 17:27:02]
  • 提交

answer

#include <bits/stdc++.h>
#define rep(i, l, r) for(int i = (l); i <= (r); i++)
#define per(i, r, l) for(int i = (r); i >= (l); i--)
#define mem(a, b) memset(a, b, sizeof a)
#define For(i, l, r) for(int i = (l), i##e = (r); i < i##e; i++)
#define pb push_back
#define eb emplace_back
#define all(x) (x).begin(), (x).end()
#define SZ(x) int((x).size())

#ifndef local
#pragma GCC optimize("O3,unroll-loops")
#pragma GCC target("avx2,bmi,bmi2,lzcnt,popcnt")
#endif

using namespace std;
using ll = long long;

template<class T> inline T& cmin(T& a, const T& b) { if(b < a) a = b; return a; }
template<class T> inline T& cmax(T& a, const T& b) { if(a < b) a = b; return a; }

template<class... Args> void print(Args&&... args) {
    ((cout << args << ' '), ...);
}
template<class... Args> void println(Args&&... args) {
    print(args...), cout << endl;
}
using u32 = uint32_t;
using u64 = uint64_t;

constexpr ll safe_mod(ll x, ll m) { return x %= m, x < 0 ? x + m : x; }
constexpr ll pow_mod_constexpr(ll x, ll n, int m) {
    if(m == 1) return 0;
    u32 _m = m; u64 r = 1, _x = safe_mod(x, m);
    for(; n; n >>= 1, _x = _x * _x % _m) if(n & 1) r = r * _x % m;
    return r;
}
constexpr bool is_prime_constexpr(int n) {
    if(n <= 1) return false;
    if(n == 2 || n == 7 || n == 61) return true;
    if(n % 2 == 0) return false;
    ll d = n - 1; while(~d & 1) d /= 2;
    for(ll a : {2, 7, 61}) {
        ll t = d, y = pow_mod_constexpr(a, t, n);
        while(t != n - 1 && y != 1 && y != n - 1) y = y * y % n, t <<= 1;
        if(y != n - 1 && t % 2 == 0) return false;
    }
    return true;
}
constexpr pair<ll, ll> inv_gcd(ll a, ll b) {
    a = safe_mod(a, b);
    if(a == 0) return {b, 0};
    ll s = b, t = a, m0 = 0, m1 = 1;
    while(t) {
        ll u = s / t; s -= t * u, m0 -= m1 * u;
        ll tmp = s; s = t, t = tmp, tmp = m0, m0 = m1, m1 = tmp;
    }
    if(m0 < 0) m0 += b / s;
    return {s, m0};
}
struct barrett {
    u32 m; u64 im;
    barrett(u32 m) :m(m), im(~0ull / m + 1) {}
    u32 mul(u32 a, u32 b) const {
        u64 z = (u64)a * b, x = (__uint128_t)z * im >> 64; u32 v = z - x * m;
        return m <= v ? v + m : v;
    }
};
template<int m> struct static_modint {
    using mint = static_modint;
  public:
    static mint raw(int v) { mint x; return x._v = v, x; }
    static_modint() :_v(0) {}
    template<class T> static_modint(T v) { ll x = v % m; _v = x < 0 ? x + m : x; }
    u32 val()const { return _v; }
    mint& operator++() { if(++_v == m) _v = 0; return *this; }
    mint& operator--() { if(!_v--) _v = m - 1; return *this; }
    mint operator++(int) { mint res = *this; ++*this; return res; }
    mint operator--(int) { mint res = *this; --*this; return res; }
    mint& operator+=(const mint& rhs) { _v += rhs._v; if(_v >= m) _v -= m; return *this; }
    mint& operator-=(const mint& rhs) { _v -= rhs._v; if(_v >= m) _v += m; return *this; }
    mint& operator*=(const mint& rhs) { u64 z = _v; z *= rhs._v, _v = z % m; return *this; }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
    mint operator+()const { return *this; }
    mint operator-()const { return mint() - *this; }
    mint pow(ll n)const { assert(0 <= n); mint x = *this, r = 1; for(; n; n >>= 1, x *= x) if(n & 1) r *= x; return r; }
    mint inv() const{ if(prime) { assert(_v); return pow(m - 2); } else { auto eg = inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } }
    friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; }
    friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; }
    friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; }
    friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; }
    friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; }
    friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; }
  private:
    u32 _v;
    static constexpr bool prime = is_prime_constexpr(m);
};
template<int id> struct dynamic_modint {
    using mint = dynamic_modint;
  public:
    static void set_mod(int m) { assert(1 <= m), bt = barrett(m); }
    static mint raw(int v) { mint x; return x._v = v, x; }
    dynamic_modint() :_v(0) {}
    template<class T> dynamic_modint(T v) { ll x = v % (int)bt.m; _v = x < 0 ? x + bt.m : x; }
    u32 val()const { return _v; }
    mint& operator++() { if(++_v == bt.m) _v = 0; return *this; }
    mint& operator--() { if(!_v--) _v = bt.m - 1; return *this; }
    mint operator++(int) { mint res = *this; ++*this; return res; }
    mint operator--(int) { mint res = *this; --*this; return res; }
    mint& operator+=(const mint& rhs) { _v += rhs._v; if(_v >= bt.m) _v -= bt.m; return *this; }
    mint& operator-=(const mint& rhs) { _v += bt.m - rhs._v; if(_v >= bt.m) _v -= bt.m; return *this; }
    mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
    mint operator+()const { return *this; }
    mint operator-()const { return mint() - *this; }
    mint pow(ll n)const { assert(0 <= n); mint x = *this, r = 1; for(; n; n >>= 1, x *= x) if(n & 1) r *= x; return r; }
    mint inv()const { auto eg = inv_gcd(_v, bt.m); assert(eg.first == 1); return eg.second; }
    friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; }
    friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; }
    friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; }
    friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; }
    friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; }
    friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; }
  private:
    u32 _v;
    static barrett bt;
};
template<int id> barrett dynamic_modint<id>::bt = 998244353;

using mint = static_modint<998244353>;

ostream& operator << (ostream& os, mint a) {
    return os << a.val();
}

int n, m;

void solve() {
    cin >> n >> m;
    int a[m];
    For(i, 0, m) cin >> a[i];
    int l = 1, r = n;
    while (l <= r) {
        int mid = (l + r) >> 1;
        ll sum = 0;
        For(i, 0, m) sum += max(a[i] - mid, 0);
        sum <= mid * (n - mid) ? r = mid - 1 : l = mid + 1;
    }
    int ans = l;
    int b[m];
    For(i, 0, m) b[i] = max(a[i] - ans, 0), a[i] -= b[i];
    cout << ans << '\n';
    char s[n][m];
    mem(s, '.');
    rep(k, n - ans, n - 1) {
        int p = k;
        For(i, 0, m) {
            if (a[i]) s[p][i] = '#', a[i]--;
            while (p && b[i]) s[--p][i] = '#', b[i]--;
        }
    }
    For(i, 0, n) {
        For(j, 0, m) cout << s[i][j];
        cout << '\n';
    }
}

int main() {
    cin.tie(nullptr)->sync_with_stdio(false);
    int t;
    cin >> t;
    while (t--)
    solve();
}

详细

Test #1:

score: 100
Accepted
time: 0ms
memory: 3632kb

input:

4
2 4
1 1 1 1
3 3
3 3 3
4 4
4 3 2 1
4 5
2 3 4 3 2

output:

1
....
####
3
###
###
###
2
####
#...
###.
##..
2
..###
.####
####.
###..

result:

ok Correct (4 test cases)

Test #2:

score: -100
Wrong Answer
time: 5ms
memory: 3656kb

input:

5699
5 5
4 5 1 3 5
4 4
3 1 2 4
5 5
2 2 3 3 4
3 4
1 3 2 2
5 5
2 5 3 4 4
4 5
4 1 1 4 1
5 5
3 3 2 5 5
5 5
3 1 3 1 1
5 5
2 4 4 3 2
4 5
2 2 2 2 2
5 5
4 5 3 4 1
5 4
5 4 1 4
5 4
1 1 1 3
4 2
2 4
5 5
2 5 5 2 5
5 5
5 1 2 1 3
5 5
4 4 2 2 3
5 2
5 2
3 5
2 3 3 1 3
5 5
4 2 5 1 1
5 5
4 5 4 1 5
5 4
3 2 5 3
5 5
5 4 1...

output:

3
.####
##..#
##.##
##...
##.##
2
...#
####
#..#
#.##
2
....#
...##
..##.
###.#
#####
2
.###
##..
.###
3
.####
.#..#
##.##
####.
.####
2
#####
#..#.
#..#.
#..#.
3
...##
...##
#####
#####
##.##
1
..###
..#..
###..
#....
#....
2
..###
.##..
.#.##
####.
###..
2
.....
.....
#####
#####
3
.####
##.#.
###...

result:

wrong answer Wrong number of colored cells (test case 1)