QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#283187#7736. Red Black TreemaspyAC ✓151ms46504kbC++2020.5kb2023-12-14 01:09:562023-12-14 01:09:56

Judging History

你现在查看的是测评时间为 2023-12-14 01:09:56 的历史记录

  • [2024-02-19 10:15:53]
  • 自动重测本题所有获得100分的提交记录
  • 测评结果:AC
  • 用时:147ms
  • 内存:49636kb
  • [2024-02-19 10:14:05]
  • hack成功,自动添加数据
  • (/hack/538)
  • [2023-12-14 01:09:56]
  • 评测
  • 测评结果:100
  • 用时:151ms
  • 内存:46504kb
  • [2023-12-14 01:09:56]
  • 提交

answer

#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) \
  vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...)   \
  vector<vector<vector<type>>> name( \
      h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...)       \
  vector<vector<vector<vector<type>>>> name( \
      a, vector<vector<vector<type>>>(       \
             b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) \
  for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T floor(T a, T b) {
  return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
  return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
  return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sm = 0;
  for (auto &&a: A) sm += a;
  return sm;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
  sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    (check(x) ? ok : ng) = x;
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    (check(x) ? ok : ng) = x;
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids),
       [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}
#endif
#line 1 "library/other/io.hpp"
#define FASTIO
#include <unistd.h>

// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;

struct Pre {
  char num[10000][4];
  constexpr Pre() : num() {
    for (int i = 0; i < 10000; i++) {
      int n = i;
      for (int j = 3; j >= 0; j--) {
        num[i][j] = n % 10 | '0';
        n /= 10;
      }
    }
  }
} constexpr pre;

inline void load() {
  memcpy(ibuf, ibuf + pil, pir - pil);
  pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
  pil = 0;
  if (pir < SZ) ibuf[pir++] = '\n';
}

inline void flush() {
  fwrite(obuf, 1, por, stdout);
  por = 0;
}

void rd(char &c) {
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
}

void rd(string &x) {
  x.clear();
  char c;
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
  do {
    x += c;
    if (pil == pir) load();
    c = ibuf[pil++];
  } while (!isspace(c));
}

template <typename T>
void rd_real(T &x) {
  string s;
  rd(s);
  x = stod(s);
}

template <typename T>
void rd_integer(T &x) {
  if (pil + 100 > pir) load();
  char c;
  do
    c = ibuf[pil++];
  while (c < '-');
  bool minus = 0;
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (c == '-') { minus = 1, c = ibuf[pil++]; }
  }
  x = 0;
  while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (minus) x = -x;
  }
}

void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }

template <class T, class U>
void rd(pair<T, U> &p) {
  return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
  if constexpr (N < std::tuple_size<T>::value) {
    auto &x = std::get<N>(t);
    rd(x);
    rd_tuple<N + 1>(t);
  }
}
template <class... T>
void rd(tuple<T...> &tpl) {
  rd_tuple(tpl);
}

template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
  for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
  for (auto &d: x) rd(d);
}

void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
  rd(h), read(t...);
}

void wt(const char c) {
  if (por == SZ) flush();
  obuf[por++] = c;
}
void wt(const string s) {
  for (char c: s) wt(c);
}
void wt(const char *s) {
  size_t len = strlen(s);
  for (size_t i = 0; i < len; i++) wt(s[i]);
}

template <typename T>
void wt_integer(T x) {
  if (por > SZ - 100) flush();
  if (x < 0) { obuf[por++] = '-', x = -x; }
  int outi;
  for (outi = 96; x >= 10000; outi -= 4) {
    memcpy(out + outi, pre.num[x % 10000], 4);
    x /= 10000;
  }
  if (x >= 1000) {
    memcpy(obuf + por, pre.num[x], 4);
    por += 4;
  } else if (x >= 100) {
    memcpy(obuf + por, pre.num[x] + 1, 3);
    por += 3;
  } else if (x >= 10) {
    int q = (x * 103) >> 10;
    obuf[por] = q | '0';
    obuf[por + 1] = (x - q * 10) | '0';
    por += 2;
  } else
    obuf[por++] = x | '0';
  memcpy(obuf + por, out + outi + 4, 96 - outi);
  por += 96 - outi;
}

template <typename T>
void wt_real(T x) {
  ostringstream oss;
  oss << fixed << setprecision(15) << double(x);
  string s = oss.str();
  wt(s);
}

void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }

template <class T, class U>
void wt(const pair<T, U> val) {
  wt(val.first);
  wt(' ');
  wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
  if constexpr (N < std::tuple_size<T>::value) {
    if constexpr (N > 0) { wt(' '); }
    const auto x = std::get<N>(t);
    wt(x);
    wt_tuple<N + 1>(t);
  }
}
template <class... T>
void wt(tuple<T...> tpl) {
  wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}
template <class T>
void wt(const vector<T> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}

void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  wt(head);
  if (sizeof...(Tail)) wt(' ');
  print(forward<Tail>(tail)...);
}

// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define U32(...)   \
  u32 __VA_ARGS__; \
  read(__VA_ARGS__)
#define U64(...)   \
  u64 __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)   \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"

#line 2 "library/graph/base.hpp"

template <typename T>
struct Edge {
  int frm, to;
  T cost;
  int id;
};

template <typename T = int, bool directed = false>
struct Graph {
  static constexpr bool is_directed = directed;
  int N, M;
  using cost_type = T;
  using edge_type = Edge<T>;
  vector<edge_type> edges;
  vector<int> indptr;
  vector<edge_type> csr_edges;
  vc<int> vc_deg, vc_indeg, vc_outdeg;
  bool prepared;

  class OutgoingEdges {
  public:
    OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}

    const edge_type* begin() const {
      if (l == r) { return 0; }
      return &G->csr_edges[l];
    }

    const edge_type* end() const {
      if (l == r) { return 0; }
      return &G->csr_edges[r];
    }

  private:
    const Graph* G;
    int l, r;
  };

  bool is_prepared() { return prepared; }

  Graph() : N(0), M(0), prepared(0) {}
  Graph(int N) : N(N), M(0), prepared(0) {}

  void build(int n) {
    N = n, M = 0;
    prepared = 0;
    edges.clear();
    indptr.clear();
    csr_edges.clear();
    vc_deg.clear();
    vc_indeg.clear();
    vc_outdeg.clear();
  }

  void add(int frm, int to, T cost = 1, int i = -1) {
    assert(!prepared);
    assert(0 <= frm && 0 <= to && to < N);
    if (i == -1) i = M;
    auto e = edge_type({frm, to, cost, i});
    edges.eb(e);
    ++M;
  }

#ifdef FASTIO
  // wt, off
  void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }

  void read_graph(int M, bool wt = false, int off = 1) {
    for (int m = 0; m < M; ++m) {
      INT(a, b);
      a -= off, b -= off;
      if (!wt) {
        add(a, b);
      } else {
        T c;
        read(c);
        add(a, b, c);
      }
    }
    build();
  }
#endif

  void build() {
    assert(!prepared);
    prepared = true;
    indptr.assign(N + 1, 0);
    for (auto&& e: edges) {
      indptr[e.frm + 1]++;
      if (!directed) indptr[e.to + 1]++;
    }
    for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
    auto counter = indptr;
    csr_edges.resize(indptr.back() + 1);
    for (auto&& e: edges) {
      csr_edges[counter[e.frm]++] = e;
      if (!directed)
        csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
    }
  }

  OutgoingEdges operator[](int v) const {
    assert(prepared);
    return {this, indptr[v], indptr[v + 1]};
  }

  vc<int> deg_array() {
    if (vc_deg.empty()) calc_deg();
    return vc_deg;
  }

  pair<vc<int>, vc<int>> deg_array_inout() {
    if (vc_indeg.empty()) calc_deg_inout();
    return {vc_indeg, vc_outdeg};
  }

  int deg(int v) {
    if (vc_deg.empty()) calc_deg();
    return vc_deg[v];
  }

  int in_deg(int v) {
    if (vc_indeg.empty()) calc_deg_inout();
    return vc_indeg[v];
  }

  int out_deg(int v) {
    if (vc_outdeg.empty()) calc_deg_inout();
    return vc_outdeg[v];
  }

#ifdef FASTIO
  void debug() {
    print("Graph");
    if (!prepared) {
      print("frm to cost id");
      for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
    } else {
      print("indptr", indptr);
      print("frm to cost id");
      FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
    }
  }
#endif

  vc<int> new_idx;
  vc<bool> used_e;

  // G における頂点 V[i] が、新しいグラフで i になるようにする
  // {G, es}
  Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) {
    if (len(new_idx) != N) new_idx.assign(N, -1);
    if (len(used_e) != M) used_e.assign(M, 0);
    int n = len(V);
    FOR(i, n) new_idx[V[i]] = i;
    Graph<T, directed> G(n);
    vc<int> history;
    FOR(i, n) {
      for (auto&& e: (*this)[V[i]]) {
        if (used_e[e.id]) continue;
        int a = e.frm, b = e.to;
        if (new_idx[a] != -1 && new_idx[b] != -1) {
          history.eb(e.id);
          used_e[e.id] = 1;
          int eid = (keep_eid ? e.id : -1);
          G.add(new_idx[a], new_idx[b], e.cost, eid);
        }
      }
    }
    FOR(i, n) new_idx[V[i]] = -1;
    for (auto&& eid: history) used_e[eid] = 0;
    G.build();
    return G;
  }

private:
  void calc_deg() {
    assert(vc_deg.empty());
    vc_deg.resize(N);
    for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
  }

  void calc_deg_inout() {
    assert(vc_indeg.empty());
    vc_indeg.resize(N);
    vc_outdeg.resize(N);
    for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
  }
};
#line 1 "library/convex/monotone_minima.hpp"

// select(i,j,k) : (i,j) -> (i,k) を行うかどうか
template <typename F>
vc<int> monotone_minima(int H, int W, F select) {
  vc<int> min_col(H);
  auto dfs = [&](auto& dfs, int x1, int x2, int y1, int y2) -> void {
    if (x1 == x2) return;
    int x = (x1 + x2) / 2;
    int best_y = y1;
    for (int y = y1 + 1; y < y2; ++y) {
      if (select(x, best_y, y)) best_y = y;
    }
    min_col[x] = best_y;
    dfs(dfs, x1, x, y1, best_y + 1);
    dfs(dfs, x + 1, x2, best_y, y2);
  };
  dfs(dfs, 0, H, 0, W);
  return min_col;
}
#line 2 "library/convex/minplus_convolution.hpp"

template <typename T>
vc<T> minplus_convolution_convex_convex(vc<T>& A, vc<T>& B) {
  int n = len(A), m = len(B);
  if (n == 0 && m == 0) return {};
  vc<T> C(n + m - 1, infty<T>);
  while (n > 0 && A[n - 1] == infty<T>) --n;
  while (m > 0 && B[m - 1] == infty<T>) --m;
  if (n == 0 && m == 0) return C;
  int a = 0, b = 0;
  while (a < n && A[a] == infty<T>) ++a;
  while (b < m && B[b] == infty<T>) ++b;
  C[a + b] = A[a] + B[b];
  for (int i = a + b + 1; i < n + m - 1; ++i) {
    if (b == m - 1 || (a != n - 1 && A[a + 1] + B[b] < A[a] + B[b + 1])) {
      chmin(C[i], A[++a] + B[b]);
    } else {
      chmin(C[i], A[a] + B[++b]);
    }
  }
  return C;
}

template <typename T>
vc<T> minplus_convolution_arbitrary_convex(vc<T>& A, vc<T>& B) {
  int n = len(A), m = len(B);
  if (n == 0 && m == 0) return {};
  vc<T> C(n + m - 1, infty<T>);
  while (m > 0 && B[m - 1] == infty<T>) --m;
  if (m == 0) return C;
  int b = 0;
  while (b < m && B[b] == infty<T>) ++b;

  auto select = [&](int i, int j, int k) -> bool {
    if (i < k) return false;
    if (i - j >= m - b) return true;
    return A[j] + B[b + i - j] >= A[k] + B[b + i - k];
  };
  vc<int> J = monotone_minima(n + m - b - 1, n, select);
  FOR(i, n + m - b - 1) {
    T x = A[J[i]], y = B[b + i - J[i]];
    if (x < infty<T> && y < infty<T>) C[b + i] = x + y;
  }
  return C;
}

template <typename T, bool convA, bool convB>
vc<T> minplus_convolution(vc<T>& A, vc<T>& B) {
  static_assert(convA || convB);
  if constexpr (convA && convB) return minplus_convolution_convex_convex(A, B);
  if constexpr (convA && !convB)
    return minplus_convolution_arbitrary_convex(B, A);
  if constexpr (convB && !convA)
    return minplus_convolution_arbitrary_convex(A, B);
  return {};
}
#line 6 "main.cpp"

void solve() {
  LL(N);
  STR(S);
  Graph<int, 1> G(N);
  FOR(v, 1, N) {
    INT(p);
    --p;
    G.add(p, v);
  }
  G.build();

  struct Data {
    ll ans, x0, x1;
    vi dp;
  };

  vi ANS(N);

  auto dfs = [&](auto& dfs, int v) -> Data {
    vc<int> ch;
    for (auto& e: G[v]) { ch.eb(e.to); }
    if (ch.empty()) {
      ANS[v] = 0;
      Data d;
      d.ans = 0;
      d.dp = {0};
      d.x0 = d.x1 = 0;
      if (S[v] == '0') d.x0++;
      if (S[v] == '1') d.x1++;
      return d;
    }
    if (len(ch) == 1) {
      Data d = dfs(dfs, ch[0]);
      if (S[v] == '0') d.x0++;
      if (S[v] == '1') d.x1++;
      ANS[v] = d.ans;
      return d;
    }

    auto get = [&](int to) -> Data {
      Data X = dfs(dfs, to);
      ll x0 = X.x0, x1 = X.x1;
      vi A(x0 + x1 + 1);
      FOR(i, x0 + x1 + 1) A[i] = abs(i - x1);
      X.dp = minplus_convolution<ll, true, false>(A, X.dp);
      return X;
    };
    auto X = get(ch[0]);
    FOR(i, 1, len(ch)) {
      Data Y = get(ch[i]);
      if (len(X.dp) < len(Y.dp)) swap(X, Y);
      while (len(X.dp) > len(Y.dp)) POP(X.dp);
      FOR(i, len(X.dp)) X.dp[i] += Y.dp[i];
    }
    X.ans = MIN(X.dp);
    X.x0 = 0, X.x1 = 0;
    if (S[v] == '0') X.x0++;
    if (S[v] == '1') X.x1++;
    ANS[v] = X.ans;
    return X;
  };
  dfs(dfs, 0);
  print(ANS);
}

signed main() {
  INT(T);
  FOR(T) solve();
  return 0;
}

这程序好像有点Bug,我给组数据试试?

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 1ms
memory: 3628kb

input:

2
9
101011110
1 1 3 3 3 6 2 2
4
1011
1 1 3

output:

4 1 2 0 0 0 0 0 0
2 0 0 0

result:

ok 2 lines

Test #2:

score: 0
Accepted
time: 102ms
memory: 46344kb

input:

6107
12
000000001000
1 2 3 2 5 4 4 7 3 8 11
19
1100111101111011110
1 2 1 1 4 5 2 4 3 2 2 7 10 2 11 3 15 5
7
0111110
1 1 2 2 1 5
3
000
1 1
7
1000011
1 2 3 3 5 4
7
0001001
1 1 1 3 5 3
8
00111000
1 1 3 2 5 2 7
11
11111110111
1 1 1 4 5 4 5 2 5 1
15
110101101000010
1 2 3 2 1 5 2 5 6 5 8 7 9 14
10
0101000...

output:

1 1 1 1 0 0 0 0 0 0 0 0
6 2 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0
0 0 0 0 0 0 0
2 0 1 0 0 0 0
2 1 0 0 0 0 0 0
4 0 0 2 1 0 0 0 0 0 0
4 3 0 0 2 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0
6 5 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 0 0
5 1 0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
5 3 ...

result:

ok 6107 lines

Test #3:

score: 0
Accepted
time: 144ms
memory: 8900kb

input:

10
100000
10001010000001100001000100001000010100010101100001001110110001000010000110001000000010000011000001000001010001110100000000000000000010011011100000000000001000000000100100100110000000100001010011000000110000000111010100100001100000100100101001000000010000000011100000000000000010001100011100...

output:

22440 21414 19422 13454 5328 2719 1421 1168 1478 661 4662 5037 418 183 2304 501 2008 1643 692 2211 570 1003 967 950 504 124 894 333 775 523 905 197 12 337 195 310 1325 1016 638 50 907 361 179 336 313 102 309 555 733 871 490 414 375 318 66 625 336 267 276 162 203 25 112 216 252 146 42 233 232 333 27 ...

result:

ok 10 lines

Test #4:

score: 0
Accepted
time: 103ms
memory: 9216kb

input:

10
100000
01010111111101011100011111111010011001111111110001100111111101011111110011101111110110111011010111011011010011111110101111111011111111011101011111011001110101111011011010110100011111001101001011111101111101111111111100101101000111111110111101111111111011111100111011101110110101111010101101...

output:

25019 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

result:

ok 10 lines

Test #5:

score: 0
Accepted
time: 116ms
memory: 46504kb

input:

10
100000
00111110110011111111111010011111011111101010110111111110011110111111111111000110101110110111111101011111111111010101111111011001110110011101111001110111101101110110101000011111110100101110110100111110001111011100111101011010111111011011100011111011110111111110011110111111001111111010011100...

output:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

result:

ok 10 lines

Test #6:

score: 0
Accepted
time: 125ms
memory: 39060kb

input:

10
100000
00111100100100001111011000100000000000111001100000000000100000101001001010010000001000010010111000001011010000000000001000000000010100000010010010000001000010001000000100000001010000000000000000000001000110000010100100000010000011000000000010010000100010100000000100000100100011000000001000...

output:

4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 4415 ...

result:

ok 10 lines

Test #7:

score: 0
Accepted
time: 104ms
memory: 27696kb

input:

10
100000
00111101111001101110101101111110100001010100011011100001011100000110000100100010111010011001111011100010010011111100000011111011001001000110000101101001011110000000011100001010100001000110110101111010000100000111001110001100001001001000101110100111111000101101100000011001110111001111101011...

output:

210 210 210 210 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

result:

ok 10 lines

Test #8:

score: 0
Accepted
time: 108ms
memory: 24476kb

input:

10
100000
00010011111100101111110000110010101110000000001111011110011010011011101011010000111100001001111111111001000110100010001111010111101100101111101100001001100110000011010100110110010101000010111001001010110111011000010100110101110001100110101010101001100010100000100000100101011110000100001001...

output:

6360 6360 4803 4803 1549 1549 1555 1555 1555 1595 1555 1549 1549 1555 1555 1600 1555 1549 1549 1549 1555 1555 1555 1555 1595 1549 1555 1555 1555 1555 1595 1595 1600 1555 1600 1600 1595 1549 1555 1555 1549 1600 1595 1600 1555 1595 1595 1549 1549 1549 1549 1555 1549 1549 1600 1595 1555 1549 1549 1555 ...

result:

ok 10 lines

Test #9:

score: 0
Accepted
time: 139ms
memory: 8940kb

input:

10
100000
11000111101111111101001011010110110111010011000111011111011111110111110000110101111111011101111011111111101110011100011101111111001011111101011111110010011111101111111011101101100110101010011111110111111101100101010011111111111100101111111101111100011100111110111111011111011001111110011101...

output:

18217 12003 6214 6012 5991 3232 2982 3008 3004 2973 3017 1780 1451 1499 1483 1513 1495 1486 1516 1499 1474 1509 1508 1037 743 738 713 722 776 752 731 741 771 759 735 731 755 740 776 733 765 736 738 753 756 739 769 678 359 362 380 364 374 342 370 356 364 393 382 367 385 360 371 370 371 383 387 387 37...

result:

ok 10 lines

Test #10:

score: 0
Accepted
time: 151ms
memory: 29204kb

input:

10
100000
10111111011011110010111111111111110111101110110001011111101110111011111111111101101011111101101001100111011011011101001110110110101010010001010111111111111111111011011011101011011101100001111101111110111110010011011111111011101110111111111110010011110011111011011011111111101111001110111111...

output:

50037 0 50035 0 50034 0 50033 0 50033 0 50032 0 50030 0 50029 0 50029 0 50027 0 50025 0 50024 0 50023 0 50022 0 50021 0 50020 0 50019 0 50019 0 50018 0 50017 0 50015 0 50014 0 50012 0 50012 0 50011 0 50011 0 50010 0 50009 0 50008 0 50006 0 50005 0 50003 0 50002 0 50000 0 49999 0 49998 0 49997 0 4999...

result:

ok 10 lines

Extra Test:

score: 0
Extra Test Passed