QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#280509 | #7789. Outro: True Love Waits | ucup-team1516# | WA | 4ms | 11372kb | C++17 | 7.0kb | 2023-12-09 16:34:33 | 2023-12-09 16:34:34 |
Judging History
answer
#pragma GCC optimize("Ofast")
#include <bits/stdc++.h>
using namespace std;
typedef long long int ll;
typedef unsigned long long int ull;
mt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());
ll myRand(ll B) {
return (ull)rng() % B;
}
inline double time() {
return static_cast<long double>(chrono::duration_cast<chrono::nanoseconds>(chrono::steady_clock::now().time_since_epoch()).count()) * 1e-9;
}
template <int mod>
struct static_modint {
using mint = static_modint;
int x;
static_modint() : x(0) {}
static_modint(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
mint& operator+=(const mint& rhs) {
if ((x += rhs.x) >= mod) x -= mod;
return *this;
}
mint& operator-=(const mint& rhs) {
if ((x += mod - rhs.x) >= mod) x -= mod;
return *this;
}
mint& operator*=(const mint& rhs) {
x = (int) (1LL * x * rhs.x % mod);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint pow(long long n) const {
mint _x = *this, r = 1;
while (n) {
if (n & 1) r *= _x;
_x *= _x;
n >>= 1;
}
return r;
}
mint inv() const { return pow(mod - 2); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs.x == rhs.x;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs.x != rhs.x;
}
friend ostream &operator<<(ostream &os, const mint &p) {
return os << p.x;
}
friend istream &operator>>(istream &is, mint &a) {
int64_t t; is >> t;
a = static_modint<mod>(t);
return (is);
}
};
const unsigned int mod = 1e9+7;
using modint = static_modint<mod>;
modint mod_pow(ll n, ll x) { return modint(n).pow(x); }
modint mod_pow(modint n, ll x) { return n.pow(x); }
template<class T>
struct Mat{
vector<vector<T>> A;
Mat(){}
Mat(size_t n,size_t m):A(n,vector<T>(m,0)){}
Mat(size_t n):A(n,vector<T>(n,0)){};
size_t height() const{
return A.size();
}
size_t width() const{
return A[0].size();
}
inline const vector<T> &operator[](int k) const{
return A.at(k);
}
inline vector<T> &operator[](int k){
return A.at(k);
}
static Mat I(size_t n){
Mat mat(n);
for(int i=0;i<n;i++){
mat[i][i]=1;
}
return mat;
}
Mat &operator+=(const Mat &B){
size_t n=height(),m=width();
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
(*this)[i][j]=(*this)[i][j]+B[i][j];
}
}
return (*this);
}
Mat &operator-=(const Mat &B){
size_t n=height(),m=width();
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
(*this)[i][j]=(*this)[i][j]-B[i][j];
}
}
return (*this);
}
Mat &operator*=(const Mat &B){
int n=height(),m=B.width(),p=width();
assert(p==B.height());
vector<vector<T>> C(n,vector<T>(m,0));
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
for(int k=0;k<p;k++){
C[i][j] += (*this)[i][k]*B[k][j];
}
}
}
A.swap(C);
return (*this);
}
Mat &operator^=(ll k){
Mat B=Mat::I(height());
while(k){
if(k%2)B*=(*this);
(*this)*=(*this);
k>>=1LL;
}
A.swap(B.A);
return (*this);
}
Mat operator+(const Mat &B) const{
return (Mat(*this)+=B);
}
Mat operator-(const Mat &B) const{
return (Mat(*this)-=B);
}
Mat operator*(const Mat &B) const{
return (Mat(*this)*=B);
}
Mat operator^(const Mat &B) const{
return (Mat(*this)^=B);
}
};
const int N = 1000100;
modint pcal[N]; // pcal[i] : i番目に0を作るのに必要な操作回数
modint psum[N];
void debug() {
set<pair<int,int>> st;
const int n = 1000; // 試行回数の上限
const int bit = 6; // ビット数(< 30)
int cur = 0;
for (int i = 0; i < n; ++i) {
printf("%03d: ", i);
cout << bitset<bit>(cur) << endl;
bool ok = false;
for (int j = 0; j < bit; ++j) {
int nxt = cur^(1<<j);
if (st.find({cur, nxt}) == st.end()) {
st.insert({cur, nxt});
st.insert({nxt, cur});
cur = nxt;
ok = true;
break;
}
}
if (!ok) break;
}
}
modint slv_0(int K) {
Mat<modint> A = Mat<modint>(3, 3);
A[0][1] = 3, A[0][2] = 4, A[1][0] = 0, A[1][1] = 4, A[1][2] = 4, A[2][2] = 1;
Mat<modint> B(3, 1);
B[2][0] = 1;
A ^= (K-1);
return (A*B)[1][0];
}
void slv(int n, vector<bool> &bit, int K) {
modint res = 0;
int sum = 0;
for (int i = n-2; i >= 0; i -= 2) {
if (!bit[i] and !bit[i+1]) {
sum += 1;
continue;
}
int id = i/2;
sum = 0;
res += psum[id];
if (bit[i] and !bit[i+1]) {
res += 1;
}
else if (bit[i] and bit[i+1]) {
res += 1 + psum[id] + 1;
}
else {
res += 1 + psum[id] + 1 + psum[id] + 1;
}
}
if (K > sum + 1) {
cout << -1 << "\n";
return;
}
res += slv_0(K);
cout << res << "\n";
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
// debug();
for (int i = 1; i < N; ++i) {
pcal[i] = (pcal[i-1]+1)*3 + 1;
psum[i] = pcal[i] + psum[i-1];
// if (i < 10) {
// cout << pcal[i] << " " << psum[i] << endl;
// }
}
int q; cin >> q;
while (q--) {
string s,t; cin >> s >> t;
reverse(s.begin(), s.end());
reverse(t.begin(), t.end());
int K; cin >> K;
int len = max(s.size(), t.size());
if (len%2) len += 1;
vector<bool> bit(len);
bool zero = true;
for (int i = 0; i < len; ++i) {
int ss = 0, tt = 0;
if (i < s.size()) ss = s[i]-'0';
if (i < t.size()) tt = t[i]-'0';
ss ^= tt;
bit[i] = ss;
if (ss) zero = false;
}
if (zero) cout << slv_0(K) << "\n";
else slv(len, bit, K);
}
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 4ms
memory: 11332kb
input:
4 1 10 1 1 10 2 100 0 2 11 11 3
output:
2 -1 9 20
result:
ok 4 number(s): "2 -1 9 20"
Test #2:
score: 0
Accepted
time: 4ms
memory: 11332kb
input:
1 0 0 1
output:
0
result:
ok 1 number(s): "0"
Test #3:
score: 0
Accepted
time: 4ms
memory: 11372kb
input:
100 110111 11111 1 10110 101101 1 11010 111111 1 100110 1 1 10010 11010 1 1100 10111 1 100100 111110 1 101110 101100 1 1011 10110 1 110100 1110 1 11010 11000 1 11110 1000 1 111000 11101 1 110 1001 1 101010 11000 1 10 111110 1 110001 101000 1 1010 1000 1 10101 11 1 111011 11010 1 110001 100000 1 1100...
output:
78 59 69 70 15 38 39 3 32 60 3 29 69 12 45 52 37 3 29 64 22 39 54 69 65 27 33 76 34 18 57 13 81 15 23 70 69 36 18 23 29 42 69 54 6 0 63 3 29 15 10 16 80 24 37 59 71 13 23 31 21 34 23 48 21 47 7 44 42 3 37 75 59 29 55 39 29 28 29 70 55 16 54 47 24 18 79 60 8 26 64 58 32 6 8 37 2 68 42 44
result:
ok 100 numbers
Test #4:
score: -100
Wrong Answer
time: 4ms
memory: 11332kb
input:
100 10011111 111 2 1011101100 1000000100 1 100011111 1001001111 1 1001100101 1100100001 1 10101000 10000100 1 1011110101 100011101 1 110100001 111011010 1 1101001100 1111101101 1 1001101 11011010 1 1101110110 1101011000 1 110011001 1100001111 2 1001111001 1011001111 1 1001110 1101110100 2 1110110100...
output:
259 224 560 311 73 690 132 283 247 76 -1 269 -1 -1 74 -1 276 257 933 313 843 0 644 711 867 444 -1 796 379 583 624 697 962 298 394 622 -1 327 855 890 633 -1 -1 795 772 318 122 251 80 524 733 536 31 698 769 913 506 211 744 636 384 685 984 330 758 237 -1 808 717 501 -1 152 -1 11 570 311 873 763 541 401...
result:
wrong answer 1st numbers differ - expected: '295', found: '259'