QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#273297#7875. Queue Sortingucup-team133#AC ✓72ms3912kbC++1718.7kb2023-12-02 22:54:062023-12-02 22:54:06

Judging History

你现在查看的是最新测评结果

  • [2023-12-02 22:54:06]
  • 评测
  • 测评结果:AC
  • 用时:72ms
  • 内存:3912kb
  • [2023-12-02 22:54:06]
  • 提交

answer

// -fsanitize=undefined,
// #define _GLIBCXX_DEBUG


#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")

#include <iostream>
#include <vector>
#include <string>
#include <map>
#include <set>
#include <queue>
#include <algorithm>
#include <cmath>
#include <iomanip>
#include <random>
#include <stdio.h>
#include <fstream>
#include <functional>
#include <cassert>
#include <unordered_map>
#include <bitset>
#include <chrono>


#include <utility>

namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    unsigned long long im;

    // @param m `1 <= m < 2^31`
    barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    // @return m
    unsigned int umod() const { return _m; }

    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

}  // namespace internal

}  // namespace atcoder


#include <cassert>
#include <numeric>
#include <type_traits>

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder

#include <cassert>
#include <numeric>
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }
    static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }
    dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder



using namespace std;
using namespace atcoder;


#define rep(i,n) for (int i=0;i<n;i+=1)
#define rrep(i,n) for (int i=n-1;i>-1;i--)
#define pb push_back
#define all(x) (x).begin(), (x).end()

#define debug(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << " )\n";

template<class T>
using vec = vector<T>;
template<class T>
using vvec = vec<vec<T>>;
template<class T>
using vvvec = vec<vvec<T>>;
using ll = long long;
using pii = pair<int,int>;
using pll = pair<ll,ll>;


template<class T>
bool chmin(T &a, T b){
  if (a>b){
    a = b;
    return true;
  }
  return false;
}

template<class T>
bool chmax(T &a, T b){
  if (a<b){
    a = b;
    return true;
  }
  return false;
}

template<class T>
T sum(vec<T> x){
  T res=0;
  for (auto e:x){
    res += e;
  }
  return res;
}

template<class T>
void printv(vec<T> x){
  for (auto e:x){
    cout<<e<<" ";
  }
  cout<<endl;
}

template<class T>
ostream& operator<<(ostream& os, const vec<T>& A){
  os << "[";
  rep(i,A.size()){
    os << A[i];
    if (i!=A.size()-1){
      os << ", ";
    }
  }
  os << "]" ;
  return os;
}

template<class T,class U>
ostream& operator<<(ostream& os, const pair<T,U>& A){
  os << "(" << A.first <<", " << A.second << ")";
  return os;
}

template<class T>
ostream& operator<<(ostream& os, const set<T>& S){
  os << "set{";
  for (auto a:S){
    os << a;
    auto it = S.find(a);
    it++;
    if (it!=S.end()){
      os << ", ";
    }
  }
  os << "}";
  return os;
}

using mint = modint998244353;

ostream& operator<<(ostream& os, const mint& a){
  os << a.val();
  return os;
}

const int M = 2000;

mint g1[M],g2[M],inverse[M];

void init_mint(){
  g1[0] = 1; g1[1] = 1;
  g2[0] = 1; g2[1] = 1;
  inverse[1] = 1;
  for (int n=2;n<M;n++){
    g1[n] = g1[n-1] * n;
    inverse[n] = (-inverse[998244353%n]) * (998244353/n);
    g2[n] = inverse[n] * g2[n-1];
  }
}

mint comb(int n,int r){
  if (r < 0 || n < r) return 0;
  return g1[n] * g2[r] * g2[n-r];
}




int main(){
  ios::sync_with_stdio(false);
  std::cin.tie(nullptr);

  init_mint();

  int N;
  cin>>N;
  vector<int> A(N);
  for (int i=0;i<N;i++) cin>>A[i];

  vector<int> cnt;
  for (auto a:A){
    if (a) cnt.push_back(a);
  }

  N = cnt.size();

  if (N == 1){
    cout << 1 << endl;
    return 0;
  }

  vector<mint> dp(cnt.back()+1,0);
  dp[cnt[N-1]] = 1;

  for (int i=N-2;0<=i;i--){
    int k = cnt[i];
    vector<mint> ndp(int(dp.size())+k,0);
    for (int L=1;L<int(dp.size());L++){
      ndp[L+k] += dp[L];
      for (int i=1;i<=L;i++){
        for (int insert_left = 0;insert_left <= k-1;insert_left++){
          int rest = k - 1 - insert_left;
          ndp[insert_left+i] += dp[L] * comb(rest+L-i,L-i);
        }
      }  
    }
    swap(dp,ndp);
  }

  mint res = accumulate(all(dp),mint(0));
  cout << res << endl;
  

  
  
}

这程序好像有点Bug,我给组数据试试?

詳細信息

Test #1:

score: 100
Accepted
time: 0ms
memory: 3800kb

input:

4
1 1 1 1

output:

14

result:

ok 1 number(s): "14"

Test #2:

score: 0
Accepted
time: 68ms
memory: 3648kb

input:

300
0 5 2 2 1 0 3 2 2 5 2 1 1 2 1 3 2 3 2 0 0 0 0 1 2 2 3 0 2 2 3 2 0 2 3 0 6 0 0 2 0 1 3 2 1 1 1 3 4 0 1 0 4 1 1 1 1 1 1 2 3 2 1 2 3 2 3 0 5 3 3 2 0 1 1 0 2 1 1 2 0 0 2 1 1 3 2 2 1 2 1 3 0 3 0 1 2 2 0 5 0 2 2 0 0 0 1 2 1 4 2 1 1 0 3 0 2 0 3 1 1 2 0 2 1 1 0 2 0 1 2 2 3 3 1 1 1 1 0 1 3 3 1 0 2 2 4 2 ...

output:

507010274

result:

ok 1 number(s): "507010274"

Test #3:

score: 0
Accepted
time: 72ms
memory: 3720kb

input:

500
1 1 0 2 1 0 2 3 2 0 0 2 0 2 1 1 0 0 1 1 1 2 1 1 1 0 1 1 2 2 1 4 0 2 1 0 2 3 1 0 1 1 0 2 1 2 2 1 0 0 3 1 4 1 1 2 1 1 0 1 3 1 2 0 0 0 2 1 2 0 0 3 2 1 1 1 1 1 2 1 0 1 0 0 0 1 0 0 2 1 1 0 1 0 1 0 1 0 0 1 0 1 1 0 0 0 1 0 0 0 2 1 1 0 1 1 0 1 1 0 0 1 0 3 1 3 0 0 2 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 2 0 0 ...

output:

7590964

result:

ok 1 number(s): "7590964"

Test #4:

score: 0
Accepted
time: 71ms
memory: 3708kb

input:

200
3 1 0 3 2 1 0 3 1 1 2 3 3 1 6 2 1 3 2 1 1 2 1 2 1 5 2 2 3 4 0 4 2 1 2 2 0 2 3 1 2 3 6 3 2 3 2 2 4 2 7 2 1 5 1 9 0 4 4 8 3 3 3 1 3 0 2 2 8 1 3 5 4 3 0 6 1 6 1 3 4 2 2 1 1 4 4 4 1 0 4 3 4 3 3 0 3 2 0 0 3 4 0 3 1 3 2 4 3 2 0 3 2 2 3 2 2 2 1 2 2 1 0 2 0 3 1 3 5 1 3 3 6 5 3 2 2 2 3 6 2 0 5 2 2 2 2 1 ...

output:

507844569

result:

ok 1 number(s): "507844569"

Test #5:

score: 0
Accepted
time: 15ms
memory: 3736kb

input:

100
4 8 2 5 4 4 3 0 2 7 2 3 4 4 1 2 3 4 4 4 3 3 3 3 3 2 4 1 3 5 5 1 4 6 1 1 1 3 2 3 2 1 0 1 4 4 2 4 2 5 3 5 1 6 2 3 3 1 4 4 4 1 4 4 3 4 2 0 2 3 6 1 3 3 5 4 1 1 2 3 0 3 2 2 1 3 3 2 5 6 3 2 3 3 5 4 2 3 4 4

output:

989550242

result:

ok 1 number(s): "989550242"

Test #6:

score: 0
Accepted
time: 0ms
memory: 3584kb

input:

1
1

output:

1

result:

ok 1 number(s): "1"

Test #7:

score: 0
Accepted
time: 0ms
memory: 3644kb

input:

500
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

output:

1

result:

ok 1 number(s): "1"

Test #8:

score: 0
Accepted
time: 0ms
memory: 3644kb

input:

10
2 1 3 3 2 3 1 1 3 1

output:

165452340

result:

ok 1 number(s): "165452340"

Test #9:

score: 0
Accepted
time: 0ms
memory: 3584kb

input:

20
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

output:

2

result:

ok 1 number(s): "2"

Test #10:

score: 0
Accepted
time: 0ms
memory: 3584kb

input:

20
0 0 1 0 0 0 0 1 0 0 0 0 0 0 2 0 1 0 0 0

output:

28

result:

ok 1 number(s): "28"

Test #11:

score: 0
Accepted
time: 0ms
memory: 3648kb

input:

10
1 1 1 1 1 1 1 1 1 1

output:

16796

result:

ok 1 number(s): "16796"

Test #12:

score: 0
Accepted
time: 17ms
memory: 3912kb

input:

300
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

output:

431279497

result:

ok 1 number(s): "431279497"

Test #13:

score: 0
Accepted
time: 28ms
memory: 3652kb

input:

2
232 268

output:

929717758

result:

ok 1 number(s): "929717758"

Test #14:

score: 0
Accepted
time: 0ms
memory: 3800kb

input:

1
500

output:

1

result:

ok 1 number(s): "1"

Test #15:

score: 0
Accepted
time: 35ms
memory: 3656kb

input:

3
155 180 165

output:

911108550

result:

ok 1 number(s): "911108550"

Extra Test:

score: 0
Extra Test Passed