QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#249790#7623. Coloring Tapeucup-team635TL 1383ms5144kbRust19.2kb2023-11-12 15:36:522023-11-12 15:36:52

Judging History

你现在查看的是测评时间为 2023-11-12 15:36:52 的历史记录

  • [2023-11-12 17:58:47]
  • 自动重测本题所有获得100分的提交记录
  • 测评结果:TL
  • 用时:1392ms
  • 内存:5196kb
  • [2023-11-12 15:36:52]
  • 评测
  • 测评结果:100
  • 用时:1383ms
  • 内存:5144kb
  • [2023-11-12 15:36:52]
  • 提交

answer

fn main() {
    input! {
        n: usize,
        w: usize,
        m: usize,
        cond: [(usize1, usize1, usize1, usize); m],
    }
    type M = ModInt<998244353>;
    let mut dp = vec![M::zero(); 1 << n];
    dp[(1 << n) - 1] = M::one();
    let mut g = vec![vec![]; w];
    for (c, x, y, diff) in cond {
        if c == 0 {
            if diff == 0 {
                dp[(1 << n) - 1] = M::zero();
            }
        } else {
            g[c].push((x, y, diff));
        }
    }
    let mut range = vec![vec![]; n];
    for g in g.into_iter().skip(1) {
        let mut ep = vec![vec![M::zero(); 1 << n]; n + 1];
        let mut start = vec![vec![M::zero(); 1 << n]; n + 1];
        let mut end = vec![vec![M::zero(); 1 << n]; n + 1];
        ep[0] = dp;
        let mut ok = [[false; 14]; 14];
        for i in 0..n {
            for k in i..n {
                ok[i][k] = true;
                for &(x, y, diff) in g.iter() {
                    if i <= x && x <= k {
                        ok[i][k] &= (diff == 0 && y <= k) || (diff == 1 && k < y);
                    }
                }
            }
            range[i].clear();
            let mut l = i + 1;
            while l < n {
                if !ok[i][l] {
                    l += 1;
                    continue;
                }
                let mut r = l;
                while r < n && ok[i][r] {
                    r += 1;
                }
                range[i].push((l, r));
                l = r;
            }
        }
        for i in 0..n {
            for j in 0..(1 << n) {
                let e = ep[i][j];
                let s = start[i][j];
                let t = end[i][j];
                start[i + 1][j & !(1 << i)] += s;
                end[i + 1][j & !(1 << i)] += t;
                ep[i + 1][j | (1 << i)] += s;
                if j >> i & 1 == 1 {
                    ep[i + 1][j & !(1 << i)] += t;
                }
                if j >> i & 1 == 1 && ok[i][i] {
                    ep[i + 1][j] += e;
                }
                for &(l, r) in range[i].iter() {
                    if j >> i & 1 == 1 {
                        let x = j & !((1 << l) - (1 << i));
                        let y = j & !((1 << r) - (1 << i));
                        start[l][x] += e;
                        start[r][y] -= e;
                    }
                    let x = j & !((1 << l) - (1 << i));
                    let y = j & !((1 << r) - (1 << i));
                    end[l][x | (1 << i)] += e;
                    end[r][y | (1 << i)] -= e;
                }
            }
        }
        dp = ep.pop().unwrap();
    }
    let ans = dp.iter().fold(M::zero(), |s, a| s + *a);
    println!("{}", ans);
}

// ---------- begin input macro ----------
// reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
#[macro_export]
macro_rules! input {
    (source = $s:expr, $($r:tt)*) => {
        let mut iter = $s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
    ($($r:tt)*) => {
        let s = {
            use std::io::Read;
            let mut s = String::new();
            std::io::stdin().read_to_string(&mut s).unwrap();
            s
        };
        let mut iter = s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
}

#[macro_export]
macro_rules! input_inner {
    ($iter:expr) => {};
    ($iter:expr, ) => {};
    ($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
        let $var = read_value!($iter, $t);
        input_inner!{$iter $($r)*}
    };
}

#[macro_export]
macro_rules! read_value {
    ($iter:expr, ( $($t:tt),* )) => {
        ( $(read_value!($iter, $t)),* )
    };
    ($iter:expr, [ $t:tt ; $len:expr ]) => {
        (0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
    };
    ($iter:expr, chars) => {
        read_value!($iter, String).chars().collect::<Vec<char>>()
    };
    ($iter:expr, bytes) => {
        read_value!($iter, String).bytes().collect::<Vec<u8>>()
    };
    ($iter:expr, usize1) => {
        read_value!($iter, usize) - 1
    };
    ($iter:expr, $t:ty) => {
        $iter.next().unwrap().parse::<$t>().expect("Parse error")
    };
}
// ---------- end input macro ----------
// ---------- begin recurse ----------
// reference
// https://twitter.com/noshi91/status/1393952665566994434
// https://twitter.com/shino16_cp/status/1393933468082397190
pub fn recurse<A, R, F>(f: F) -> impl Fn(A) -> R
where
    F: Fn(&dyn Fn(A) -> R, A) -> R,
{
    fn call<A, R, F>(f: &F, a: A) -> R
    where
        F: Fn(&dyn Fn(A) -> R, A) -> R,
    {
        f(&|a| call(f, a), a)
    }
    move |a| call(&f, a)
}
// ---------- end recurse ----------

use std::ops::*;

pub trait Zero: Sized + Add<Self, Output = Self> {
    fn zero() -> Self;
    fn is_zero(&self) -> bool;
}

pub trait One: Sized + Mul<Self, Output = Self> {
    fn one() -> Self;
    fn is_one(&self) -> bool;
}

pub trait Ring: Zero + One + Sub<Output = Self> {}

pub trait Field: Ring + Div<Output = Self> {}

pub const fn pow_mod(mut r: u32, mut n: u32, m: u32) -> u32 {
    let mut t = 1;
    while n > 0 {
        if n & 1 == 1 {
            t = (t as u64 * r as u64 % m as u64) as u32;
        }
        r = (r as u64 * r as u64 % m as u64) as u32;
        n >>= 1;
    }
    t
}

pub const fn primitive_root(p: u32) -> u32 {
    let mut m = p - 1;
    let mut f = [1; 30];
    let mut k = 0;
    let mut d = 2;
    while d * d <= m {
        if m % d == 0 {
            f[k] = d;
            k += 1;
        }
        while m % d == 0 {
            m /= d;
        }
        d += 1;
    }
    if m > 1 {
        f[k] = m;
        k += 1;
    }
    let mut g = 1;
    while g < p {
        let mut ok = true;
        let mut i = 0;
        while i < k {
            ok &= pow_mod(g, (p - 1) / f[i], p) > 1;
            i += 1;
        }
        if ok {
            break;
        }
        g += 1;
    }
    g
}

pub const fn is_prime(n: u32) -> bool {
    if n <= 1 {
        return false;
    }
    let mut d = 2;
    while d * d <= n {
        if n % d == 0 {
            return false;
        }
        d += 1;
    }
    true
}

#[derive(Clone, Copy, PartialEq, Eq)]
pub struct ModInt<const M: u32>(u32);

impl<const M: u32> ModInt<{ M }> {
    const REM: u32 = {
        let mut t = 1u32;
        let mut s = !M + 1;
        let mut n = !0u32 >> 2;
        while n > 0 {
            if n & 1 == 1 {
                t = t.wrapping_mul(s);
            }
            s = s.wrapping_mul(s);
            n >>= 1;
        }
        t
    };
    const INI: u64 = ((1u128 << 64) % M as u128) as u64;
    const IS_PRIME: () = assert!(is_prime(M));
    const PRIMITIVE_ROOT: u32 = primitive_root(M);
    const ORDER: usize = 1 << (M - 1).trailing_zeros();
    const fn reduce(x: u64) -> u32 {
        let _ = Self::IS_PRIME;
        let b = (x as u32 * Self::REM) as u64;
        let t = x + b * M as u64;
        let mut c = (t >> 32) as u32;
        if c >= M {
            c -= M;
        }
        c as u32
    }
    const fn multiply(a: u32, b: u32) -> u32 {
        Self::reduce(a as u64 * b as u64)
    }
    pub const fn new(v: u32) -> Self {
        assert!(v < M);
        Self(Self::reduce(v as u64 * Self::INI))
    }
    pub const fn const_mul(&self, rhs: Self) -> Self {
        Self(Self::multiply(self.0, rhs.0))
    }
    pub const fn pow(&self, mut n: u64) -> Self {
        let mut t = Self::new(1);
        let mut r = *self;
        while n > 0 {
            if n & 1 == 1 {
                t = t.const_mul(r);
            }
            r = r.const_mul(r);
            n >>= 1;
        }
        t
    }
    pub const fn inv(&self) -> Self {
        assert!(self.0 != 0);
        self.pow(M as u64 - 2)
    }
    pub const fn get(&self) -> u32 {
        Self::reduce(self.0 as u64)
    }
    pub const fn zero() -> Self {
        Self::new(0)
    }
    pub const fn one() -> Self {
        Self::new(1)
    }
}

impl<const M: u32> Add for ModInt<{ M }> {
    type Output = Self;
    fn add(self, rhs: Self) -> Self::Output {
        let mut v = self.0 + rhs.0;
        if v >= M {
            v -= M;
        }
        Self(v)
    }
}

impl<const M: u32> Sub for ModInt<{ M }> {
    type Output = Self;
    fn sub(self, rhs: Self) -> Self::Output {
        let mut v = self.0 - rhs.0;
        if self.0 < rhs.0 {
            v += M;
        }
        Self(v)
    }
}

impl<const M: u32> Mul for ModInt<{ M }> {
    type Output = Self;
    fn mul(self, rhs: Self) -> Self::Output {
        self.const_mul(rhs)
    }
}

impl<const M: u32> Div for ModInt<{ M }> {
    type Output = Self;
    fn div(self, rhs: Self) -> Self::Output {
        self * rhs.inv()
    }
}

impl<const M: u32> AddAssign for ModInt<{ M }> {
    fn add_assign(&mut self, rhs: Self) {
        *self = *self + rhs;
    }
}

impl<const M: u32> SubAssign for ModInt<{ M }> {
    fn sub_assign(&mut self, rhs: Self) {
        *self = *self - rhs;
    }
}

impl<const M: u32> MulAssign for ModInt<{ M }> {
    fn mul_assign(&mut self, rhs: Self) {
        *self = *self * rhs;
    }
}

impl<const M: u32> DivAssign for ModInt<{ M }> {
    fn div_assign(&mut self, rhs: Self) {
        *self = *self / rhs;
    }
}

impl<const M: u32> Neg for ModInt<{ M }> {
    type Output = Self;
    fn neg(self) -> Self::Output {
        if self.0 == 0 {
            self
        } else {
            Self(M - self.0)
        }
    }
}

impl<const M: u32> std::fmt::Display for ModInt<{ M }> {
    fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
        write!(f, "{}", self.get())
    }
}

impl<const M: u32> std::fmt::Debug for ModInt<{ M }> {
    fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
        write!(f, "{}", self.get())
    }
}

impl<const M: u32> std::str::FromStr for ModInt<{ M }> {
    type Err = std::num::ParseIntError;
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        let val = s.parse::<u32>()?;
        Ok(ModInt::new(val))
    }
}

impl<const M: u32> From<usize> for ModInt<{ M }> {
    fn from(val: usize) -> ModInt<{ M }> {
        ModInt::new((val % M as usize) as u32)
    }
}

impl<const M: u32> Zero for ModInt<{ M }> {
    fn zero() -> Self {
        Self::zero()
    }
    fn is_zero(&self) -> bool {
        self.0 == 0
    }
}

impl<const M: u32> One for ModInt<{ M }> {
    fn one() -> Self {
        Self::one()
    }
    fn is_one(&self) -> bool {
        self.get() == 1
    }
}

impl<const M: u32> Ring for ModInt<{ M }> {}
impl<const M: u32> Field for ModInt<{ M }> {}

struct NTTPrecalc<const M: u32> {
    sum_e: [ModInt<{ M }>; 30],
    sum_ie: [ModInt<{ M }>; 30],
}

impl<const M: u32> NTTPrecalc<{ M }> {
    const fn new() -> Self {
        let cnt2 = (M - 1).trailing_zeros() as usize;
        let root = ModInt::new(ModInt::<{ M }>::PRIMITIVE_ROOT);
        let zeta = root.pow((M - 1) as u64 >> cnt2);
        let mut es = [ModInt::zero(); 30];
        let mut ies = [ModInt::zero(); 30];
        let mut sum_e = [ModInt::zero(); 30];
        let mut sum_ie = [ModInt::zero(); 30];
        let mut e = zeta;
        let mut ie = e.inv();
        let mut i = cnt2;
        while i >= 2 {
            es[i - 2] = e;
            ies[i - 2] = ie;
            e = e.const_mul(e);
            ie = ie.const_mul(ie);
            i -= 1;
        }
        let mut now = ModInt::one();
        let mut inow = ModInt::one();
        let mut i = 0;
        while i < cnt2 - 1 {
            sum_e[i] = es[i].const_mul(now);
            sum_ie[i] = ies[i].const_mul(inow);
            now = ies[i].const_mul(now);
            inow = es[i].const_mul(inow);
            i += 1;
        }
        Self { sum_e, sum_ie }
    }
}

struct NTTPrecalcHelper<const MOD: u32>;
impl<const MOD: u32> NTTPrecalcHelper<MOD> {
    const A: NTTPrecalc<MOD> = NTTPrecalc::new();
}

pub trait ArrayAdd {
    type Item;
    fn add(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayAdd for [T]
where
    T: Zero + Copy,
{
    type Item = T;
    fn add(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        let mut c = vec![T::zero(); self.len().max(rhs.len())];
        c[..self.len()].copy_from_slice(self);
        c.add_assign(rhs);
        c
    }
}

pub trait ArrayAddAssign {
    type Item;
    fn add_assign(&mut self, rhs: &[Self::Item]);
}

impl<T> ArrayAddAssign for [T]
where
    T: Add<Output = T> + Copy,
{
    type Item = T;
    fn add_assign(&mut self, rhs: &[Self::Item]) {
        assert!(self.len() >= rhs.len());
        self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x + *a);
    }
}

impl<T> ArrayAddAssign for Vec<T>
where
    T: Zero + Add<Output = T> + Copy,
{
    type Item = T;
    fn add_assign(&mut self, rhs: &[Self::Item]) {
        if self.len() < rhs.len() {
            self.resize(rhs.len(), T::zero());
        }
        self.as_mut_slice().add_assign(rhs);
    }
}

pub trait ArraySub {
    type Item;
    fn sub(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArraySub for [T]
where
    T: Zero + Sub<Output = T> + Copy,
{
    type Item = T;
    fn sub(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        let mut c = vec![T::zero(); self.len().max(rhs.len())];
        c[..self.len()].copy_from_slice(self);
        c.sub_assign(rhs);
        c
    }
}

pub trait ArraySubAssign {
    type Item;
    fn sub_assign(&mut self, rhs: &[Self::Item]);
}

impl<T> ArraySubAssign for [T]
where
    T: Sub<Output = T> + Copy,
{
    type Item = T;
    fn sub_assign(&mut self, rhs: &[Self::Item]) {
        assert!(self.len() >= rhs.len());
        self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x - *a);
    }
}

impl<T> ArraySubAssign for Vec<T>
where
    T: Zero + Sub<Output = T> + Copy,
{
    type Item = T;
    fn sub_assign(&mut self, rhs: &[Self::Item]) {
        if self.len() < rhs.len() {
            self.resize(rhs.len(), T::zero());
        }
        self.as_mut_slice().sub_assign(rhs);
    }
}

pub trait ArrayDot {
    type Item;
    fn dot(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayDot for [T]
where
    T: Mul<Output = T> + Copy,
{
    type Item = T;
    fn dot(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        assert!(self.len() == rhs.len());
        self.iter().zip(rhs).map(|p| *p.0 * *p.1).collect()
    }
}

pub trait ArrayDotAssign {
    type Item;
    fn dot_assign(&mut self, rhs: &[Self::Item]);
}

impl<T> ArrayDotAssign for [T]
where
    T: MulAssign + Copy,
{
    type Item = T;
    fn dot_assign(&mut self, rhs: &[Self::Item]) {
        assert!(self.len() == rhs.len());
        self.iter_mut().zip(rhs).for_each(|(x, a)| *x *= *a);
    }
}

pub trait ArrayMul {
    type Item;
    fn mul(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayMul for [T]
where
    T: Zero + One + Copy,
{
    type Item = T;
    fn mul(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        if self.is_empty() || rhs.is_empty() {
            return vec![];
        }
        let mut res = vec![T::zero(); self.len() + rhs.len() - 1];
        for (i, a) in self.iter().enumerate() {
            for (res, b) in res[i..].iter_mut().zip(rhs.iter()) {
                *res = *res + *a * *b;
            }
        }
        res
    }
}

// transform でlen=1を指定すればNTTになる
pub trait ArrayConvolution {
    type Item;
    fn transform(&mut self, len: usize);
    fn inverse_transform(&mut self, len: usize);
    fn convolution(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<const M: u32> ArrayConvolution for [ModInt<{ M }>] {
    type Item = ModInt<{ M }>;
    fn transform(&mut self, len: usize) {
        let f = self;
        let n = f.len();
        let k = (n / len).trailing_zeros() as usize;
        assert!(len << k == n);
        assert!(k <= ModInt::<{ M }>::ORDER);
        let pre = &NTTPrecalcHelper::<M>::A;
        for ph in 1..=k {
            let p = len << (k - ph);
            let mut now = ModInt::one();
            for (i, f) in f.chunks_exact_mut(2 * p).enumerate() {
                let (x, y) = f.split_at_mut(p);
                for (x, y) in x.iter_mut().zip(y.iter_mut()) {
                    let l = *x;
                    let r = *y * now;
                    *x = l + r;
                    *y = l - r;
                }
                now *= pre.sum_e[(!i).trailing_zeros() as usize];
            }
        }
    }
    fn inverse_transform(&mut self, len: usize) {
        let f = self;
        let n = f.len();
        let k = (n / len).trailing_zeros() as usize;
        assert!(len << k == n);
        assert!(k <= ModInt::<{ M }>::ORDER);
        let pre = &NTTPrecalcHelper::<M>::A;
        for ph in (1..=k).rev() {
            let p = len << (k - ph);
            let mut inow = ModInt::one();
            for (i, f) in f.chunks_exact_mut(2 * p).enumerate() {
                let (x, y) = f.split_at_mut(p);
                for (x, y) in x.iter_mut().zip(y.iter_mut()) {
                    let l = *x;
                    let r = *y;
                    *x = l + r;
                    *y = (l - r) * inow;
                }
                inow *= pre.sum_ie[(!i).trailing_zeros() as usize];
            }
        }
        let ik = ModInt::new(2).inv().pow(k as u64);
        for f in f.iter_mut() {
            *f *= ik;
        }
    }
    fn convolution(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        if self.len().min(rhs.len()) <= 32 {
            return self.mul(rhs);
        }
        const PARAM: usize = 10;
        let size = self.len() + rhs.len() - 1;
        let mut k = 0;
        while (size + (1 << k) - 1) >> k > PARAM {
            k += 1;
        }
        let len = (size + (1 << k) - 1) >> k;
        let mut f = vec![ModInt::zero(); len << k];
        let mut g = vec![ModInt::zero(); len << k];
        f[..self.len()].copy_from_slice(self);
        g[..rhs.len()].copy_from_slice(rhs);
        f.transform(len);
        g.transform(len);
        let mut buf = [ModInt::zero(); 2 * PARAM - 1];
        let buf = &mut buf[..(2 * len - 1)];
        let pre = &NTTPrecalcHelper::<M>::A;
        let mut now = ModInt::one();
        for (i, (f, g)) in f
            .chunks_exact_mut(2 * len)
            .zip(g.chunks_exact(2 * len))
            .enumerate()
        {
            let mut r = now;
            for (f, g) in f.chunks_exact_mut(len).zip(g.chunks_exact(len)) {
                buf.fill(ModInt::zero());
                for (i, f) in f.iter().enumerate() {
                    for (buf, g) in buf[i..].iter_mut().zip(g.iter()) {
                        *buf = *buf + *f * *g;
                    }
                }
                f.copy_from_slice(&buf[..len]);
                for (f, buf) in f.iter_mut().zip(buf[len..].iter()) {
                    *f = *f + r * *buf;
                }
                r = -r;
            }
            now *= pre.sum_e[(!i).trailing_zeros() as usize];
        }
        f.inverse_transform(len);
        f.truncate(self.len() + rhs.len() - 1);
        f
    }
}

这程序好像有点Bug,我给组数据试试?

詳細信息

Test #1:

score: 100
Accepted
time: 0ms
memory: 2184kb

input:

3 5 3
3 2 3 0
4 1 2 0
5 1 3 0

output:

19

result:

ok 1 number(s): "19"

Test #2:

score: 0
Accepted
time: 0ms
memory: 2044kb

input:

5 10 10
9 3 4 1
2 4 5 0
7 2 3 0
9 2 3 0
6 3 5 0
6 2 4 1
2 4 5 0
1 1 3 1
7 2 4 0
10 2 3 0

output:

1514

result:

ok 1 number(s): "1514"

Test #3:

score: 0
Accepted
time: 0ms
memory: 1956kb

input:

5 10 20
8 4 5 0
2 2 5 1
8 4 5 0
10 3 5 0
7 1 3 1
1 2 4 1
6 3 5 1
10 3 5 0
4 1 5 1
7 3 4 1
2 2 4 1
8 3 4 0
9 3 5 0
5 2 5 1
9 4 5 0
9 1 2 0
6 1 5 1
8 3 5 0
2 2 4 1
8 3 5 0

output:

28131

result:

ok 1 number(s): "28131"

Test #4:

score: 0
Accepted
time: 11ms
memory: 2112kb

input:

10 100 200
95 5 7 0
7 4 6 1
62 9 10 0
32 5 8 1
31 2 6 1
75 7 9 1
1 4 7 1
18 7 10 1
75 1 8 1
87 6 9 1
44 7 8 1
68 6 9 1
95 4 6 0
34 1 2 1
70 1 6 1
31 5 9 1
15 6 10 1
48 5 8 1
51 3 7 1
39 5 9 1
23 2 3 1
7 8 9 1
84 7 10 1
13 4 9 1
18 3 6 1
59 9 10 0
31 8 10 1
6 7 9 1
76 3 10 1
41 5 6 0
33 3 4 1
96 1 10...

output:

655333622

result:

ok 1 number(s): "655333622"

Test #5:

score: 0
Accepted
time: 22ms
memory: 2244kb

input:

10 200 200
106 9 10 0
93 4 10 1
199 3 7 0
73 2 9 1
105 8 9 0
38 9 10 1
73 8 10 1
153 3 9 1
123 2 5 1
159 7 9 0
154 5 7 1
162 3 7 0
113 1 5 1
131 7 9 1
67 4 6 1
178 6 10 0
157 7 9 0
147 9 10 0
154 7 10 0
123 3 4 1
39 8 10 1
139 2 9 1
191 9 10 0
36 4 5 1
17 2 8 1
124 3 7 1
9 9 10 1
71 9 10 1
181 7 8 0...

output:

552037151

result:

ok 1 number(s): "552037151"

Test #6:

score: 0
Accepted
time: 32ms
memory: 2140kb

input:

10 300 200
252 1 5 0
48 9 10 1
18 9 10 1
233 9 10 0
195 2 9 1
125 2 5 1
263 7 9 1
24 1 6 1
258 2 10 1
272 8 10 1
76 5 7 1
147 1 7 1
93 9 10 1
30 6 9 1
10 1 10 1
56 2 10 1
93 8 9 1
206 6 9 1
65 1 9 1
226 3 5 0
88 7 8 1
151 3 4 1
292 9 10 0
129 2 3 1
292 9 10 0
180 7 10 1
4 5 10 1
10 9 10 1
151 4 7 1
...

output:

4494096

result:

ok 1 number(s): "4494096"

Test #7:

score: 0
Accepted
time: 54ms
memory: 2156kb

input:

10 500 300
210 4 7 1
341 8 9 0
371 2 5 0
21 4 10 1
370 8 9 0
368 1 6 0
395 7 9 0
287 6 10 1
299 3 7 1
379 1 9 1
164 4 10 1
390 7 9 0
455 6 9 0
208 8 10 1
402 3 10 0
112 8 10 1
279 3 10 1
180 7 10 1
456 2 6 0
121 5 6 1
312 5 7 0
335 8 10 0
318 2 10 1
497 8 10 0
108 8 9 0
247 3 6 1
155 5 6 1
308 1 2 0...

output:

705403853

result:

ok 1 number(s): "705403853"

Test #8:

score: 0
Accepted
time: 269ms
memory: 2672kb

input:

12 500 300
115 3 10 1
152 10 12 1
89 8 12 1
276 4 7 0
467 6 7 0
405 5 9 0
189 4 9 1
197 1 3 1
341 7 8 0
67 7 8 1
266 2 6 1
78 8 12 1
317 11 12 0
417 8 10 0
380 2 8 0
255 2 5 1
80 7 9 1
317 5 11 1
470 5 9 0
373 3 4 0
413 4 10 0
393 9 12 0
362 8 10 1
42 7 12 1
486 3 5 0
229 1 5 0
224 6 7 0
55 3 10 1
4...

output:

378086467

result:

ok 1 number(s): "378086467"

Test #9:

score: 0
Accepted
time: 273ms
memory: 2608kb

input:

12 500 500
54 11 12 1
325 10 11 0
83 2 3 1
148 3 10 1
165 3 11 1
16 11 12 1
363 8 10 1
78 11 12 1
258 4 12 1
237 8 11 1
403 2 10 1
354 1 9 1
234 4 7 1
454 9 11 0
160 11 12 1
393 1 3 0
375 9 11 0
494 1 3 0
200 6 12 1
414 11 12 0
217 9 10 0
92 5 9 1
172 5 6 1
110 8 12 1
339 4 12 1
429 2 4 0
29 10 11 1...

output:

948753642

result:

ok 1 number(s): "948753642"

Test #10:

score: 0
Accepted
time: 1341ms
memory: 4996kb

input:

14 500 500
362 4 12 1
225 5 9 1
428 5 9 1
101 8 10 1
488 5 9 0
249 11 14 1
232 2 6 1
220 4 10 1
20 7 13 1
154 4 13 1
480 8 14 0
9 2 4 1
201 7 10 1
174 10 11 0
169 13 14 0
256 10 12 1
403 11 13 0
492 10 14 0
167 6 12 1
123 11 13 1
471 9 10 0
77 5 9 1
51 6 10 1
411 11 14 1
422 11 13 0
7 1 7 1
284 5 11...

output:

103280588

result:

ok 1 number(s): "103280588"

Test #11:

score: 0
Accepted
time: 1284ms
memory: 5096kb

input:

14 500 0

output:

750061283

result:

ok 1 number(s): "750061283"

Test #12:

score: 0
Accepted
time: 1246ms
memory: 5144kb

input:

14 495 0

output:

662120858

result:

ok 1 number(s): "662120858"

Test #13:

score: 0
Accepted
time: 1254ms
memory: 5096kb

input:

14 490 0

output:

456608006

result:

ok 1 number(s): "456608006"

Test #14:

score: 0
Accepted
time: 1298ms
memory: 5000kb

input:

14 500 5
123 7 12 1
24 13 14 1
170 6 13 1
304 2 8 1
475 10 11 0

output:

715116697

result:

ok 1 number(s): "715116697"

Test #15:

score: 0
Accepted
time: 1286ms
memory: 5016kb

input:

14 500 10
237 5 9 1
36 3 14 1
470 5 13 1
315 4 6 1
28 9 12 1
220 11 14 0
160 9 12 1
312 10 11 0
72 7 12 1
230 8 11 0

output:

434022866

result:

ok 1 number(s): "434022866"

Test #16:

score: 0
Accepted
time: 1279ms
memory: 4952kb

input:

14 500 15
339 5 10 1
326 4 7 1
421 12 14 0
225 13 14 1
307 1 3 0
285 2 4 0
33 8 10 1
226 2 3 0
478 13 14 1
347 5 11 1
138 5 13 1
141 9 14 1
417 2 8 1
172 6 11 1
222 7 14 1

output:

268520991

result:

ok 1 number(s): "268520991"

Test #17:

score: 0
Accepted
time: 1293ms
memory: 5016kb

input:

14 500 20
357 5 14 1
296 10 14 1
490 9 10 0
221 11 12 1
490 12 13 0
469 5 13 1
93 2 8 1
482 12 14 0
461 2 7 1
152 2 13 1
34 8 14 1
60 9 12 1
195 4 5 0
1 6 8 1
3 5 11 1
129 11 13 1
124 13 14 1
434 11 13 0
141 4 5 1
80 6 12 1

output:

691528902

result:

ok 1 number(s): "691528902"

Test #18:

score: 0
Accepted
time: 1297ms
memory: 5052kb

input:

14 500 100
85 13 14 0
130 2 7 0
38 5 10 0
450 1 2 1
103 8 10 0
410 11 14 1
39 10 14 0
29 3 4 0
98 9 11 0
226 6 9 1
17 5 6 0
475 9 12 1
337 12 13 1
42 10 11 0
457 8 10 1
49 1 2 0
222 9 13 0
105 7 11 0
403 6 8 1
151 2 8 0
13 11 12 0
483 10 14 1
304 5 9 1
197 5 14 0
58 4 7 0
482 1 12 1
331 12 13 1
398 ...

output:

0

result:

ok 1 number(s): "0"

Test #19:

score: 0
Accepted
time: 1332ms
memory: 5008kb

input:

14 498 200
457 10 13 0
163 6 10 0
23 2 5 0
109 5 8 0
113 12 14 0
294 10 12 0
1 10 14 0
451 1 2 0
275 1 13 0
345 10 14 0
171 2 9 0
392 8 11 0
184 13 14 0
328 10 11 0
84 10 13 0
238 6 12 0
306 6 13 0
56 8 14 0
404 10 14 0
90 3 10 0
446 12 14 0
303 9 11 0
71 11 12 0
362 10 13 0
405 13 14 1
258 4 13 0
1...

output:

0

result:

ok 1 number(s): "0"

Test #20:

score: 0
Accepted
time: 1323ms
memory: 4972kb

input:

14 497 300
265 5 12 0
368 6 14 0
400 3 10 0
408 13 14 1
494 9 11 1
8 13 14 0
132 10 14 0
203 4 10 0
86 13 14 0
96 3 9 0
39 11 14 0
439 8 9 0
161 1 13 0
264 1 7 0
176 8 10 0
8 10 12 0
299 2 13 0
285 1 13 0
392 7 8 1
143 11 13 0
84 10 11 1
270 1 9 0
311 8 10 0
39 5 10 0
282 4 11 0
45 9 10 0
465 12 14 ...

output:

0

result:

ok 1 number(s): "0"

Test #21:

score: 0
Accepted
time: 1383ms
memory: 5068kb

input:

14 499 500
349 7 10 0
440 11 13 0
391 5 11 0
461 8 10 1
172 12 14 0
139 5 10 0
79 3 4 0
456 10 11 0
276 11 14 0
484 5 6 1
178 11 13 0
295 8 11 0
384 3 8 0
112 9 11 0
170 3 7 0
490 12 14 1
243 7 9 0
360 4 7 0
302 10 12 0
266 5 8 0
350 8 12 0
282 7 12 0
480 7 11 1
312 10 13 0
356 13 14 0
277 4 5 0
245...

output:

0

result:

ok 1 number(s): "0"

Test #22:

score: 0
Accepted
time: 1291ms
memory: 4924kb

input:

14 500 3
2 1 2 0
2 2 3 0
2 1 3 1

output:

0

result:

ok 1 number(s): "0"

Test #23:

score: 0
Accepted
time: 0ms
memory: 1988kb

input:

1 500 0

output:

1

result:

ok 1 number(s): "1"

Test #24:

score: 0
Accepted
time: 0ms
memory: 1968kb

input:

4 2 0

output:

17

result:

ok 1 number(s): "17"

Extra Test:

score: 0
Extra Test Passed