QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#230968 | #7640. Colorful Cycles | ucup-team296# | Compile Error | / | / | Rust | 45.0kb | 2023-10-28 22:37:35 | 2023-10-28 22:37:35 |
Judging History
你现在查看的是最新测评结果
- [2024-07-04 22:58:32]
- hack成功,自动添加数据
- (/hack/728)
- [2023-10-28 22:37:35]
- 评测
- 测评结果:Compile Error
- 用时:0ms
- 内存:0kb
- [2023-10-28 22:37:35]
- 提交
answer
//
pub mod solution {
use crate::collections::bit_set::BitSet;
use crate::collections::default_map::default_hash_map::DefaultHashMap;
use crate::graph::cut_points::CutPointSearch;
use crate::graph::edges::bi_weighted_edge::BiWeightedEdge;
use crate::graph::edges::edge_trait::EdgeTrait;
use crate::graph::edges::weighted_edge_trait::WeightedEdgeTrait;
use crate::graph::graph::Graph;
use crate::io::input::Input;
use crate::io::output::{BoolOutput, Output};
use crate::misc::recursive_function::{Callable2, RecursiveFunction2};
use crate::numbers::num_traits::bit_ops::BitOps;
type PreCalc = ();
fn solve(input: &mut Input, out: &mut Output, _test_case: usize, _data: &PreCalc) {
let n = input.read_size();
let m = input.read_size();
let edges = input.read_vec::<(usize, usize, usize)>(m);
let mut graph = Graph::new(n);
for (u, v, c) in edges {
graph.add_edge(u - 1, BiWeightedEdge::new(v - 1, c));
}
let cut_points = graph.cut_points();
let is_cut = BitSet::from_slice(n, &cut_points);
let mut done = BitSet::new(n);
for i in 0..n {
if done[i] || is_cut[i] {
continue;
}
let mut seen_colors = DefaultHashMap::<_, u8>::new();
let mut dfs = RecursiveFunction2::new(|f, vert: usize, prev: usize| {
done.set(vert);
for e in &graph[vert] {
if e.to() == prev {
continue;
}
seen_colors[e.to()].set_bit(e.weight());
seen_colors[vert].set_bit(e.weight());
if !done[e.to()] && !is_cut[e.to()] {
f.call(e.to(), vert);
}
}
});
dfs.call(i, i);
let mut qty = 0;
for &m in seen_colors.values() {
if m.count_ones() > 1 {
qty += 1;
}
}
if qty > 2 {
out.print_line(true);
return;
}
}
out.print_line(false);
}
pub(crate) fn run(mut input: Input, mut output: Output) -> bool {
let pre_calc = ();
#[allow(dead_code)]
enum TestType {
Single,
MultiNumber,
MultiEof,
}
let test_type = TestType::MultiNumber;
output.set_bool_output(BoolOutput::YesNo);
match test_type {
TestType::Single => solve(&mut input, &mut output, 1, &pre_calc),
TestType::MultiNumber => {
let t = input.read();
for i in 1..=t {
solve(&mut input, &mut output, i, &pre_calc);
}
}
TestType::MultiEof => {
let mut i = 1;
while input.peek().is_some() {
solve(&mut input, &mut output, i, &pre_calc);
i += 1;
}
}
}
output.flush();
input.skip_whitespace();
input.peek().is_none()
}
}
pub mod collections {
pub mod bit_set {
use crate::collections::slice_ext::legacy_fill::LegacyFill;
use crate::numbers::num_traits::bit_ops::BitOps;
use std::ops::{BitAndAssign, BitOrAssign, Index};
const TRUE: bool = true;
const FALSE: bool = false;
#[derive(Clone, Eq, PartialEq)]
pub struct BitSet {
data: Vec<u64>,
len: usize,
}
impl BitSet {
pub fn new(len: usize) -> Self {
let data_len = if len == 0 {
0
} else {
Self::index(len - 1) + 1
};
Self {
data: vec![0; data_len],
len,
}
}
pub fn from_slice(len: usize, set: &[usize]) -> Self {
let mut res = Self::new(len);
for &i in set {
res.set(i);
}
res
}
pub fn set(&mut self, at: usize) {
assert!(at < self.len);
self.data[Self::index(at)].set_bit(at & 63);
}
pub fn unset(&mut self, at: usize) {
assert!(at < self.len);
self.data[Self::index(at)].unset_bit(at & 63);
}
pub fn change(&mut self, at: usize, value: bool) {
if value {
self.set(at);
} else {
self.unset(at);
}
}
pub fn flip(&mut self, at: usize) {
self.change(at, !self[at]);
}
#[allow(clippy::len_without_is_empty)]
pub fn len(&self) -> usize {
self.len
}
pub fn fill(&mut self, value: bool) {
// 1.43
self.data.legacy_fill(if value { std::u64::MAX } else { 0 })
}
pub fn is_superset(&self, other: &Self) -> bool {
assert_eq!(self.len, other.len);
for i in 0..self.data.len() {
if self.data[i] & other.data[i] != other.data[i] {
return false;
}
}
true
}
pub fn is_subset(&self, other: &Self) -> bool {
other.is_superset(self)
}
pub fn iter(&self) -> impl Iterator<Item = usize> + '_ {
self.into_iter()
}
fn index(at: usize) -> usize {
at >> 6
}
pub fn count_ones(&self) -> usize {
self.data.iter().map(|x| x.count_ones() as usize).sum()
}
}
pub struct BitSetIter<'s> {
at: usize,
inside: usize,
set: &'s BitSet,
}
impl<'s> Iterator for BitSetIter<'s> {
type Item = usize;
fn next(&mut self) -> Option<Self::Item> {
while self.at < self.set.data.len()
&& (self.inside == 64 || (self.set.data[self.at] >> self.inside) == 0)
{
self.at += 1;
self.inside = 0;
}
if self.at == self.set.data.len() {
None
} else {
while !self.set.data[self.at].is_set(self.inside) {
self.inside += 1;
}
let res = self.at * 64 + self.inside;
if res < self.set.len {
self.inside += 1;
Some(res)
} else {
None
}
}
}
}
impl<'a> IntoIterator for &'a BitSet {
type Item = usize;
type IntoIter = BitSetIter<'a>;
fn into_iter(self) -> Self::IntoIter {
BitSetIter {
at: 0,
inside: 0,
set: self,
}
}
}
impl BitOrAssign<&BitSet> for BitSet {
fn bitor_assign(&mut self, rhs: &BitSet) {
assert_eq!(self.len, rhs.len);
for (i, &j) in self.data.iter_mut().zip(rhs.data.iter()) {
*i |= j;
}
}
}
impl BitAndAssign<&BitSet> for BitSet {
fn bitand_assign(&mut self, rhs: &BitSet) {
assert_eq!(self.len, rhs.len);
for (i, &j) in self.data.iter_mut().zip(rhs.data.iter()) {
*i &= j;
}
}
}
impl Index<usize> for BitSet {
type Output = bool;
fn index(&self, at: usize) -> &Self::Output {
assert!(at < self.len);
if self.data[Self::index(at)].is_set(at & 63) {
&TRUE
} else {
&FALSE
}
}
}
impl From<Vec<bool>> for BitSet {
fn from(data: Vec<bool>) -> Self {
let mut res = Self::new(data.len());
for (i, &value) in data.iter().enumerate() {
res.change(i, value);
}
res
}
}
}
pub mod default_map {
pub mod default_hash_map {
use std::collections::HashMap;
use std::hash::Hash;
use std::ops::{Deref, DerefMut, Index, IndexMut};
#[derive(Default, Clone, Eq, PartialEq)]
pub struct DefaultHashMap<K: Hash + Eq, V>(HashMap<K, V>, V);
impl<K: Hash + Eq, V> Deref for DefaultHashMap<K, V> {
type Target = HashMap<K, V>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl<K: Hash + Eq, V> DerefMut for DefaultHashMap<K, V> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
impl<K: Hash + Eq, V: Default> DefaultHashMap<K, V> {
pub fn new() -> Self {
Self(HashMap::new(), V::default())
}
pub fn with_capacity(cap: usize) -> Self {
Self(HashMap::with_capacity(cap), V::default())
}
pub fn get(&self, key: &K) -> &V {
self.0.get(key).unwrap_or(&self.1)
}
pub fn get_mut(&mut self, key: K) -> &mut V {
self.0.entry(key).or_insert_with(|| V::default())
}
pub fn into_values(self) -> std::collections::hash_map::IntoValues<K, V> {
self.0.into_values()
}
}
impl<K: Hash + Eq, V: Default> Index<K> for DefaultHashMap<K, V> {
type Output = V;
fn index(&self, index: K) -> &Self::Output {
self.get(&index)
}
}
impl<K: Hash + Eq, V: Default> IndexMut<K> for DefaultHashMap<K, V> {
fn index_mut(&mut self, index: K) -> &mut Self::Output {
self.get_mut(index)
}
}
impl<K: Hash + Eq, V> IntoIterator for DefaultHashMap<K, V> {
type Item = (K, V);
type IntoIter = std::collections::hash_map::IntoIter<K, V>;
fn into_iter(self) -> Self::IntoIter {
self.0.into_iter()
}
}
impl<K: Hash + Eq, V: Default> FromIterator<(K, V)> for DefaultHashMap<K, V> {
fn from_iter<T: IntoIterator<Item = (K, V)>>(iter: T) -> Self {
Self(iter.into_iter().collect(), V::default())
}
}
}
}
pub mod dsu {
use crate::collections::iter_ext::collect::IterCollect;
use crate::collections::slice_ext::bounds::Bounds;
use crate::collections::slice_ext::legacy_fill::LegacyFill;
use std::cell::Cell;
#[derive(Clone)]
pub struct DSU {
id: Vec<Cell<u32>>,
size: Vec<u32>,
count: usize,
}
impl DSU {
pub fn new(n: usize) -> Self {
Self {
id: (0..n).map(|i| Cell::new(i as u32)).collect_vec(),
size: vec![1; n],
count: n,
}
}
pub fn size(&self, i: usize) -> usize {
self.size[self.get(i)] as usize
}
#[allow(clippy::len_without_is_empty)]
pub fn len(&self) -> usize {
self.id.len()
}
pub fn iter(&self) -> impl Iterator<Item = usize> + '_ {
self.id.iter().enumerate().filter_map(|(i, id)| {
if (i as u32) == id.get() {
Some(i)
} else {
None
}
})
}
pub fn set_count(&self) -> usize {
self.count
}
pub fn join(&mut self, mut a: usize, mut b: usize) -> bool {
a = self.get(a);
b = self.get(b);
if a == b {
false
} else {
self.size[a] += self.size[b];
self.id[b].replace(a as u32);
self.count -= 1;
true
}
}
pub fn get(&self, i: usize) -> usize {
if self.id[i].get() != i as u32 {
let res = self.get(self.id[i].get() as usize);
self.id[i].replace(res as u32);
}
self.id[i].get() as usize
}
pub fn clear(&mut self) {
self.count = self.id.len();
self.size.legacy_fill(1);
self.id.iter().enumerate().for_each(|(i, id)| {
id.replace(i as u32);
});
}
pub fn parts(&self) -> Vec<Vec<usize>> {
let roots = self.iter().collect_vec();
let mut res = vec![Vec::new(); roots.len()];
for i in 0..self.id.len() {
res[roots.as_slice().bin_search(&self.get(i)).unwrap()].push(i);
}
res
}
}
}
pub mod iter_ext {
pub mod collect {
pub trait IterCollect<T>: Iterator<Item = T> + Sized {
fn collect_vec(self) -> Vec<T> {
self.collect()
}
}
impl<T, I: Iterator<Item = T> + Sized> IterCollect<T> for I {}
}
}
pub mod min_max {
pub trait MinimMaxim<Rhs = Self>: PartialOrd + Sized {
fn minim(&mut self, other: Rhs) -> bool;
fn maxim(&mut self, other: Rhs) -> bool;
}
impl<T: PartialOrd> MinimMaxim for T {
fn minim(&mut self, other: Self) -> bool {
if other < *self {
*self = other;
true
} else {
false
}
}
fn maxim(&mut self, other: Self) -> bool {
if other > *self {
*self = other;
true
} else {
false
}
}
}
impl<T: PartialOrd> MinimMaxim<T> for Option<T> {
fn minim(&mut self, other: T) -> bool {
match self {
None => {
*self = Some(other);
true
}
Some(v) => v.minim(other),
}
}
fn maxim(&mut self, other: T) -> bool {
match self {
None => {
*self = Some(other);
true
}
Some(v) => v.maxim(other),
}
}
}
}
pub mod slice_ext {
pub mod bounds {
pub trait Bounds<T: PartialOrd> {
fn lower_bound(&self, el: &T) -> usize;
fn upper_bound(&self, el: &T) -> usize;
fn bin_search(&self, el: &T) -> Option<usize>;
fn more(&self, el: &T) -> usize;
fn more_or_eq(&self, el: &T) -> usize;
fn less(&self, el: &T) -> usize;
fn less_or_eq(&self, el: &T) -> usize;
}
impl<T: PartialOrd> Bounds<T> for [T] {
fn lower_bound(&self, el: &T) -> usize {
let mut left = 0;
let mut right = self.len();
while left < right {
let mid = left + ((right - left) >> 1);
if &self[mid] < el {
left = mid + 1;
} else {
right = mid;
}
}
left
}
fn upper_bound(&self, el: &T) -> usize {
let mut left = 0;
let mut right = self.len();
while left < right {
let mid = left + ((right - left) >> 1);
if &self[mid] <= el {
left = mid + 1;
} else {
right = mid;
}
}
left
}
fn bin_search(&self, el: &T) -> Option<usize> {
let at = self.lower_bound(el);
if at == self.len() || &self[at] != el {
None
} else {
Some(at)
}
}
fn more(&self, el: &T) -> usize {
self.len() - self.upper_bound(el)
}
fn more_or_eq(&self, el: &T) -> usize {
self.len() - self.lower_bound(el)
}
fn less(&self, el: &T) -> usize {
self.lower_bound(el)
}
fn less_or_eq(&self, el: &T) -> usize {
self.upper_bound(el)
}
}
}
pub mod legacy_fill {
// 1.50
pub trait LegacyFill<T> {
fn legacy_fill(&mut self, val: T);
}
impl<T: Clone> LegacyFill<T> for [T] {
fn legacy_fill(&mut self, val: T) {
for el in self.iter_mut() {
*el = val.clone();
}
}
}
}
}
pub mod vec_ext {
pub mod default {
pub fn default_vec<T: Default>(len: usize) -> Vec<T> {
let mut v = Vec::with_capacity(len);
for _ in 0..len {
v.push(T::default());
}
v
}
}
}
}
pub mod graph {
pub mod cut_points {
use crate::collections::bit_set::BitSet;
use crate::collections::min_max::MinimMaxim;
use crate::graph::edges::edge_trait::EdgeTrait;
use crate::graph::graph::Graph;
use crate::misc::recursive_function::{Callable2, RecursiveFunction2};
pub trait CutPointSearch {
fn cut_points(&self) -> Vec<usize>;
}
impl<E: EdgeTrait> CutPointSearch for Graph<E> {
fn cut_points(&self) -> Vec<usize> {
assert!(E::REVERSABLE);
let n = self.vertex_count();
let mut timer = 0;
let mut tin = vec![0; n];
let mut fup = vec![0; n];
let mut used = BitSet::new(n);
let mut ans = Vec::new();
for i in 0..n {
if !used[i] {
let mut dfs = RecursiveFunction2::new(|f, vert: usize, prev: usize| {
let mut children = 0;
used.set(vert);
tin[vert] = timer;
fup[vert] = timer;
timer += 1;
for e in &self[vert] {
if e.to() == prev {
continue;
}
let to = e.to();
if used[to] {
fup[vert].minim(tin[to]);
} else {
f.call(to, vert);
let cand = fup[to];
fup[vert].minim(cand);
if fup[to] >= tin[vert] && prev != n {
ans.push(vert);
}
children += 1;
}
}
if prev == n && children > 1 {
ans.push(vert);
}
});
dfs.call(i, n);
}
}
ans
}
}
}
pub mod edges {
pub mod bi_edge {
use crate::graph::edges::bi_edge_trait::BiEdgeTrait;
use crate::graph::edges::edge_id::{EdgeId, NoId, WithId};
use crate::graph::edges::edge_trait::{BidirectionalEdgeTrait, EdgeTrait};
use crate::graph::graph::Graph;
use crate::io::input::{Input, Readable};
#[derive(Clone)]
pub struct BiEdgeRaw<Id: EdgeId> {
to: u32,
id: Id,
}
impl<Id: EdgeId> BiEdgeRaw<Id> {
pub fn new(to: usize) -> Self {
Self {
to: to as u32,
id: Id::new(),
}
}
}
impl<Id: EdgeId> BidirectionalEdgeTrait for BiEdgeRaw<Id> {}
impl<Id: EdgeId> EdgeTrait for BiEdgeRaw<Id> {
const REVERSABLE: bool = true;
fn to(&self) -> usize {
self.to as usize
}
fn id(&self) -> usize {
self.id.id()
}
fn set_id(&mut self, id: usize) {
self.id.set_id(id);
}
fn reverse_id(&self) -> usize {
panic!("no reverse id")
}
fn set_reverse_id(&mut self, _: usize) {}
fn reverse_edge(&self, from: usize) -> Self {
Self::new(from)
}
}
impl<Id: EdgeId> BiEdgeTrait for BiEdgeRaw<Id> {}
pub type BiEdge = BiEdgeRaw<NoId>;
pub type BiEdgeWithId = BiEdgeRaw<WithId>;
pub trait ReadBiEdgeGraph {
fn read_graph<Id: EdgeId>(&mut self, n: usize, m: usize) -> Graph<BiEdgeRaw<Id>>;
fn read_tree<Id: EdgeId>(&mut self, n: usize) -> Graph<BiEdgeRaw<Id>> {
self.read_graph(n, n - 1)
}
}
impl ReadBiEdgeGraph for Input<'_> {
fn read_graph<Id: EdgeId>(&mut self, n: usize, m: usize) -> Graph<BiEdgeRaw<Id>> {
let mut graph = Graph::new(n);
for _ in 0..m {
graph.add_edge(self.read(), BiEdgeRaw::new(self.read()));
}
graph
}
}
impl<Id: EdgeId> Readable for Graph<BiEdgeRaw<Id>> {
fn read(input: &mut Input) -> Self {
let n = input.read();
let m = input.read();
<Input as ReadBiEdgeGraph>::read_graph(input, n, m)
}
}
}
pub mod bi_edge_trait {
use crate::graph::edges::edge_trait::EdgeTrait;
pub trait BiEdgeTrait: EdgeTrait {}
}
pub mod bi_weighted_edge {
use crate::graph::edges::bi_edge_trait::BiEdgeTrait;
use crate::graph::edges::edge_id::{EdgeId, NoId, WithId};
use crate::graph::edges::edge_trait::{BidirectionalEdgeTrait, EdgeTrait};
use crate::graph::edges::weighted_edge_trait::WeightedEdgeTrait;
use crate::graph::graph::Graph;
use crate::io::input::{Input, Readable};
use crate::numbers::num_traits::add_sub::Addable;
use crate::numbers::num_traits::zero_one::ZeroOne;
#[derive(Clone)]
pub struct BiWeightedEdgeRaw<W: Copy, Id: EdgeId> {
to: u32,
weight: W,
id: Id,
}
impl<W: Copy, Id: EdgeId> BiWeightedEdgeRaw<W, Id> {
pub fn new(to: usize, w: W) -> Self {
Self {
to: to as u32,
weight: w,
id: Id::new(),
}
}
}
impl<W: Copy, Id: EdgeId> BidirectionalEdgeTrait for BiWeightedEdgeRaw<W, Id> {}
impl<W: Copy, Id: EdgeId> EdgeTrait for BiWeightedEdgeRaw<W, Id> {
const REVERSABLE: bool = true;
fn to(&self) -> usize {
self.to as usize
}
fn id(&self) -> usize {
self.id.id()
}
fn set_id(&mut self, id: usize) {
self.id.set_id(id);
}
fn reverse_id(&self) -> usize {
panic!("no reverse")
}
fn set_reverse_id(&mut self, _: usize) {}
fn reverse_edge(&self, from: usize) -> Self {
Self::new(from, self.weight)
}
}
impl<W: Copy, Id: EdgeId> BiEdgeTrait for BiWeightedEdgeRaw<W, Id> {}
impl<W: Copy, Id: EdgeId> WeightedEdgeTrait<W> for BiWeightedEdgeRaw<W, Id> {
fn weight(&self) -> W {
self.weight
}
fn weight_mut(&mut self) -> &mut W {
&mut self.weight
}
}
pub type BiWeightedEdge<W> = BiWeightedEdgeRaw<W, NoId>;
pub type BiWeightedEdgeWithId<W> = BiWeightedEdgeRaw<W, WithId>;
pub trait ReadBiWeightedEdgeGraph {
fn read_graph<W: Addable + Copy + ZeroOne + Readable, Id: EdgeId>(
&mut self,
n: usize,
m: usize,
) -> Graph<BiWeightedEdgeRaw<W, Id>>;
fn read_tree<W: Addable + Copy + ZeroOne + Readable, Id: EdgeId>(
&mut self,
n: usize,
) -> Graph<BiWeightedEdgeRaw<W, Id>> {
self.read_graph(n, n - 1)
}
}
impl ReadBiWeightedEdgeGraph for Input<'_> {
fn read_graph<W: Addable + Copy + ZeroOne + Readable, Id: EdgeId>(
&mut self,
n: usize,
m: usize,
) -> Graph<BiWeightedEdgeRaw<W, Id>> {
let mut graph = Graph::new(n);
for _ in 0..m {
graph.add_edge(
self.read(),
BiWeightedEdgeRaw::new(self.read(), self.read()),
);
}
graph
}
}
impl<W: Addable + Copy + ZeroOne + Readable, Id: EdgeId> Readable
for Graph<BiWeightedEdgeRaw<W, Id>>
{
fn read(input: &mut Input) -> Self {
let n = input.read();
let m = input.read();
<Input as ReadBiWeightedEdgeGraph>::read_graph(input, n, m)
}
}
}
pub mod edge {
use crate::graph::edges::edge_id::{EdgeId, NoId, WithId};
use crate::graph::edges::edge_trait::EdgeTrait;
use crate::graph::graph::Graph;
use crate::io::input::{Input, Readable};
#[derive(Clone)]
pub struct EdgeRaw<Id: EdgeId> {
to: u32,
id: Id,
}
impl<Id: EdgeId> EdgeRaw<Id> {
pub fn new(to: usize) -> Self {
Self {
to: to as u32,
id: Id::new(),
}
}
}
impl<Id: EdgeId> EdgeTrait for EdgeRaw<Id> {
const REVERSABLE: bool = false;
fn to(&self) -> usize {
self.to as usize
}
fn id(&self) -> usize {
self.id.id()
}
fn set_id(&mut self, id: usize) {
self.id.set_id(id);
}
fn reverse_id(&self) -> usize {
panic!("no reverse")
}
fn set_reverse_id(&mut self, _: usize) {
panic!("no reverse")
}
fn reverse_edge(&self, _: usize) -> Self {
panic!("no reverse")
}
}
pub type Edge = EdgeRaw<NoId>;
pub type EdgeWithId = EdgeRaw<WithId>;
pub trait ReadEdgeGraph {
fn read_graph<Id: EdgeId>(&mut self, n: usize, m: usize) -> Graph<EdgeRaw<Id>>;
}
impl ReadEdgeGraph for Input<'_> {
fn read_graph<Id: EdgeId>(&mut self, n: usize, m: usize) -> Graph<EdgeRaw<Id>> {
let mut graph = Graph::new(n);
for _ in 0..m {
graph.add_edge(self.read(), EdgeRaw::new(self.read()));
}
graph
}
}
impl<Id: EdgeId> Readable for Graph<EdgeRaw<Id>> {
fn read(input: &mut Input) -> Self {
let n = input.read();
let m = input.read();
<Input as ReadEdgeGraph>::read_graph(input, n, m)
}
}
}
pub mod edge_id {
pub trait EdgeId: Clone {
fn new() -> Self;
fn id(&self) -> usize;
fn set_id(&mut self, id: usize);
}
#[derive(Clone)]
pub struct WithId {
id: u32,
}
impl EdgeId for WithId {
fn new() -> Self {
Self { id: 0 }
}
fn id(&self) -> usize {
self.id as usize
}
fn set_id(&mut self, id: usize) {
self.id = id as u32;
}
}
#[derive(Clone)]
pub struct NoId {}
impl EdgeId for NoId {
fn new() -> Self {
Self {}
}
fn id(&self) -> usize {
panic!("Id called on no id")
}
fn set_id(&mut self, _: usize) {}
}
}
pub mod edge_trait {
pub trait EdgeTrait: Clone {
const REVERSABLE: bool;
fn to(&self) -> usize;
fn id(&self) -> usize;
fn set_id(&mut self, id: usize);
fn reverse_id(&self) -> usize;
fn set_reverse_id(&mut self, reverse_id: usize);
#[must_use]
fn reverse_edge(&self, from: usize) -> Self;
}
pub trait BidirectionalEdgeTrait: EdgeTrait {}
}
pub mod weighted_edge_trait {
use crate::graph::edges::edge_trait::EdgeTrait;
pub trait WeightedEdgeTrait<W: Copy>: EdgeTrait {
fn weight(&self) -> W;
fn weight_mut(&mut self) -> &mut W;
}
}
}
pub mod graph {
use crate::collections::dsu::DSU;
use crate::graph::edges::bi_edge::BiEdge;
use crate::graph::edges::edge::Edge;
use crate::graph::edges::edge_trait::{BidirectionalEdgeTrait, EdgeTrait};
use std::ops::{Index, IndexMut};
pub struct Graph<E: EdgeTrait> {
pub(super) edges: Vec<Vec<E>>,
edge_count: usize,
}
impl<E: EdgeTrait> Graph<E> {
pub fn new(vertex_count: usize) -> Self {
Self {
edges: vec![Vec::new(); vertex_count],
edge_count: 0,
}
}
pub fn add_edge(&mut self, from: usize, mut edge: E) -> usize {
let to = edge.to();
assert!(to < self.edges.len());
let direct_id = self.edges[from].len();
edge.set_id(self.edge_count);
self.edges[from].push(edge);
if E::REVERSABLE {
let rev_id = self.edges[to].len();
self.edges[from][direct_id].set_reverse_id(rev_id);
let mut rev_edge = self.edges[from][direct_id].reverse_edge(from);
rev_edge.set_id(self.edge_count);
rev_edge.set_reverse_id(direct_id);
self.edges[to].push(rev_edge);
}
self.edge_count += 1;
direct_id
}
pub fn add_vertices(&mut self, cnt: usize) {
self.edges.resize(self.edges.len() + cnt, Vec::new());
}
pub fn clear(&mut self) {
self.edge_count = 0;
for ve in self.edges.iter_mut() {
ve.clear();
}
}
pub fn vertex_count(&self) -> usize {
self.edges.len()
}
pub fn edge_count(&self) -> usize {
self.edge_count
}
}
impl<E: BidirectionalEdgeTrait> Graph<E> {
pub fn is_tree(&self) -> bool {
if self.edge_count + 1 != self.vertex_count() {
false
} else {
self.is_connected()
}
}
pub fn is_forest(&self) -> bool {
let mut dsu = DSU::new(self.vertex_count());
for i in 0..self.vertex_count() {
for e in self[i].iter() {
if i <= e.to() && !dsu.join(i, e.to()) {
return false;
}
}
}
true
}
pub fn is_connected(&self) -> bool {
let mut dsu = DSU::new(self.vertex_count());
for i in 0..self.vertex_count() {
for e in self[i].iter() {
dsu.join(i, e.to());
}
}
dsu.set_count() == 1
}
}
impl<E: EdgeTrait> Index<usize> for Graph<E> {
type Output = [E];
fn index(&self, index: usize) -> &Self::Output {
&self.edges[index]
}
}
impl<E: EdgeTrait> IndexMut<usize> for Graph<E> {
fn index_mut(&mut self, index: usize) -> &mut Self::Output {
&mut self.edges[index]
}
}
impl Graph<Edge> {
pub fn from_edges(n: usize, edges: &[(usize, usize)]) -> Self {
let mut graph = Self::new(n);
for &(from, to) in edges {
graph.add_edge(from, Edge::new(to));
}
graph
}
}
impl Graph<BiEdge> {
pub fn from_biedges(n: usize, edges: &[(usize, usize)]) -> Self {
let mut graph = Self::new(n);
for &(from, to) in edges {
graph.add_edge(from, BiEdge::new(to));
}
graph
}
}
}
}
pub mod io {
pub mod input {
use crate::collections::vec_ext::default::default_vec;
use std::io::Read;
pub struct Input<'s> {
input: &'s mut dyn Read,
buf: Vec<u8>,
at: usize,
buf_read: usize,
}
macro_rules! read_impl {
($t: ty, $read_name: ident, $read_vec_name: ident) => {
pub fn $read_name(&mut self) -> $t {
self.read()
}
pub fn $read_vec_name(&mut self, len: usize) -> Vec<$t> {
self.read_vec(len)
}
};
($t: ty, $read_name: ident, $read_vec_name: ident, $read_pair_vec_name: ident) => {
read_impl!($t, $read_name, $read_vec_name);
pub fn $read_pair_vec_name(&mut self, len: usize) -> Vec<($t, $t)> {
self.read_vec(len)
}
};
}
impl<'s> Input<'s> {
const DEFAULT_BUF_SIZE: usize = 4096;
pub fn new(input: &'s mut dyn Read) -> Self {
Self {
input,
buf: default_vec(Self::DEFAULT_BUF_SIZE),
at: 0,
buf_read: 0,
}
}
pub fn new_with_size(input: &'s mut dyn Read, buf_size: usize) -> Self {
Self {
input,
buf: default_vec(buf_size),
at: 0,
buf_read: 0,
}
}
pub fn get(&mut self) -> Option<u8> {
if self.refill_buffer() {
let res = self.buf[self.at];
self.at += 1;
if res == b'\r' {
if self.refill_buffer() && self.buf[self.at] == b'\n' {
self.at += 1;
}
return Some(b'\n');
}
Some(res)
} else {
None
}
}
pub fn peek(&mut self) -> Option<u8> {
if self.refill_buffer() {
let res = self.buf[self.at];
Some(if res == b'\r' { b'\n' } else { res })
} else {
None
}
}
pub fn skip_whitespace(&mut self) {
while let Some(b) = self.peek() {
if !char::from(b).is_whitespace() {
return;
}
self.get();
}
}
pub fn next_token(&mut self) -> Option<Vec<u8>> {
self.skip_whitespace();
let mut res = Vec::new();
while let Some(c) = self.get() {
if char::from(c).is_whitespace() {
break;
}
res.push(c);
}
if res.is_empty() {
None
} else {
Some(res)
}
}
//noinspection RsSelfConvention
pub fn is_exhausted(&mut self) -> bool {
self.peek().is_none()
}
pub fn read<T: Readable>(&mut self) -> T {
T::read(self)
}
pub fn read_vec<T: Readable>(&mut self, size: usize) -> Vec<T> {
let mut res = Vec::with_capacity(size);
for _ in 0..size {
res.push(self.read());
}
res
}
pub fn read_char(&mut self) -> char {
self.skip_whitespace();
self.get().unwrap().into()
}
read_impl!(u32, read_unsigned, read_unsigned_vec);
read_impl!(u64, read_u64, read_u64_vec);
read_impl!(usize, read_size, read_size_vec, read_size_pair_vec);
read_impl!(i32, read_int, read_int_vec, read_int_pair_vec);
read_impl!(i64, read_long, read_long_vec, read_long_pair_vec);
read_impl!(i128, read_i128, read_i128_vec);
fn refill_buffer(&mut self) -> bool {
if self.at == self.buf_read {
self.at = 0;
self.buf_read = self.input.read(&mut self.buf).unwrap();
self.buf_read != 0
} else {
true
}
}
}
pub trait Readable {
fn read(input: &mut Input) -> Self;
}
impl Readable for char {
fn read(input: &mut Input) -> Self {
input.read_char()
}
}
impl<T: Readable> Readable for Vec<T> {
fn read(input: &mut Input) -> Self {
let size = input.read();
input.read_vec(size)
}
}
macro_rules! read_integer {
($($t:ident)+) => {$(
impl Readable for $t {
fn read(input: &mut Input) -> Self {
input.skip_whitespace();
let mut c = input.get().unwrap();
let sgn = match c {
b'-' => {
c = input.get().unwrap();
true
}
b'+' => {
c = input.get().unwrap();
false
}
_ => false,
};
let mut res = 0;
loop {
assert!(c.is_ascii_digit());
res *= 10;
let d = (c - b'0') as $t;
if sgn {
res -= d;
} else {
res += d;
}
match input.get() {
None => break,
Some(ch) => {
if ch.is_ascii_whitespace() {
break;
} else {
c = ch;
}
}
}
}
res
}
}
)+};
}
read_integer!(i8 i16 i32 i64 i128 isize u8 u16 u32 u64 u128 usize);
macro_rules! tuple_readable {
($($name:ident)+) => {
impl<$($name: Readable), +> Readable for ($($name,)+) {
fn read(input: &mut Input) -> Self {
($($name::read(input),)+)
}
}
}
}
tuple_readable! {T}
tuple_readable! {T U}
tuple_readable! {T U V}
tuple_readable! {T U V X}
tuple_readable! {T U V X Y}
tuple_readable! {T U V X Y Z}
tuple_readable! {T U V X Y Z A}
tuple_readable! {T U V X Y Z A B}
tuple_readable! {T U V X Y Z A B C}
tuple_readable! {T U V X Y Z A B C D}
tuple_readable! {T U V X Y Z A B C D E}
tuple_readable! {T U V X Y Z A B C D E F}
impl Read for Input<'_> {
fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
if self.at == self.buf_read {
self.input.read(buf)
} else {
let mut i = 0;
while i < buf.len() && self.at < self.buf_read {
buf[i] = self.buf[self.at];
i += 1;
self.at += 1;
}
Ok(i)
}
}
}
}
pub mod output {
use crate::collections::vec_ext::default::default_vec;
use std::io::{stderr, Stderr, Write};
#[derive(Copy, Clone)]
pub enum BoolOutput {
YesNo,
YesNoCaps,
PossibleImpossible,
Custom(&'static str, &'static str),
}
impl BoolOutput {
pub fn output(&self, output: &mut Output, val: bool) {
(if val { self.yes() } else { self.no() }).write(output);
}
fn yes(&self) -> &str {
match self {
BoolOutput::YesNo => "Yes",
BoolOutput::YesNoCaps => "YES",
BoolOutput::PossibleImpossible => "Possible",
BoolOutput::Custom(yes, _) => yes,
}
}
fn no(&self) -> &str {
match self {
BoolOutput::YesNo => "No",
BoolOutput::YesNoCaps => "NO",
BoolOutput::PossibleImpossible => "Impossible",
BoolOutput::Custom(_, no) => no,
}
}
}
pub struct Output<'s> {
output: &'s mut dyn Write,
buf: Vec<u8>,
at: usize,
auto_flush: bool,
bool_output: BoolOutput,
}
impl<'s> Output<'s> {
const DEFAULT_BUF_SIZE: usize = 4096;
pub fn new(output: &'s mut dyn Write) -> Self {
Self {
output,
buf: default_vec(Self::DEFAULT_BUF_SIZE),
at: 0,
auto_flush: false,
bool_output: BoolOutput::YesNoCaps,
}
}
pub fn new_with_auto_flush(output: &'s mut dyn Write) -> Self {
Self {
output,
buf: default_vec(Self::DEFAULT_BUF_SIZE),
at: 0,
auto_flush: true,
bool_output: BoolOutput::YesNoCaps,
}
}
pub fn flush(&mut self) {
if self.at != 0 {
self.output.write_all(&self.buf[..self.at]).unwrap();
self.output.flush().unwrap();
self.at = 0;
}
}
pub fn print<T: Writable>(&mut self, s: T) {
s.write(self);
self.maybe_flush();
}
pub fn print_line<T: Writable>(&mut self, s: T) {
self.print(s);
self.put(b'\n');
self.maybe_flush();
}
pub fn put(&mut self, b: u8) {
self.buf[self.at] = b;
self.at += 1;
if self.at == self.buf.len() {
self.flush();
}
}
pub fn maybe_flush(&mut self) {
if self.auto_flush {
self.flush();
}
}
pub fn print_per_line<T: Writable>(&mut self, arg: &[T]) {
for i in arg {
i.write(self);
self.put(b'\n');
}
}
pub fn print_iter<T: Writable, I: Iterator<Item = T>>(&mut self, iter: I) {
let mut first = true;
for e in iter {
if first {
first = false;
} else {
self.put(b' ');
}
e.write(self);
}
}
pub fn print_iter_ref<'a, T: 'a + Writable, I: Iterator<Item = &'a T>>(&mut self, iter: I) {
let mut first = true;
for e in iter {
if first {
first = false;
} else {
self.put(b' ');
}
e.write(self);
}
}
pub fn set_bool_output(&mut self, bool_output: BoolOutput) {
self.bool_output = bool_output;
}
}
impl Write for Output<'_> {
fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
let mut start = 0usize;
let mut rem = buf.len();
while rem > 0 {
let len = (self.buf.len() - self.at).min(rem);
self.buf[self.at..self.at + len].copy_from_slice(&buf[start..start + len]);
self.at += len;
if self.at == self.buf.len() {
self.flush();
}
start += len;
rem -= len;
}
self.maybe_flush();
Ok(buf.len())
}
fn flush(&mut self) -> std::io::Result<()> {
self.flush();
Ok(())
}
}
pub trait Writable {
fn write(&self, output: &mut Output);
}
impl Writable for &str {
fn write(&self, output: &mut Output) {
output.write_all(self.as_bytes()).unwrap();
}
}
impl Writable for String {
fn write(&self, output: &mut Output) {
output.write_all(self.as_bytes()).unwrap();
}
}
impl Writable for char {
fn write(&self, output: &mut Output) {
output.put(*self as u8);
}
}
impl<T: Writable> Writable for [T] {
fn write(&self, output: &mut Output) {
output.print_iter_ref(self.iter());
}
}
impl<T: Writable, const N: usize> Writable for [T; N] {
fn write(&self, output: &mut Output) {
output.print_iter_ref(self.iter());
}
}
impl<T: Writable> Writable for &T {
fn write(&self, output: &mut Output) {
T::write(self, output)
}
}
impl<T: Writable> Writable for Vec<T> {
fn write(&self, output: &mut Output) {
self.as_slice().write(output);
}
}
impl Writable for () {
fn write(&self, _output: &mut Output) {}
}
macro_rules! write_to_string {
($($t:ident)+) => {$(
impl Writable for $t {
fn write(&self, output: &mut Output) {
self.to_string().write(output);
}
}
)+};
}
write_to_string!(u8 u16 u32 u64 u128 usize i8 i16 i32 i64 i128 isize);
macro_rules! tuple_writable {
($name0:ident $($name:ident: $id:tt )*) => {
impl<$name0: Writable, $($name: Writable,)*> Writable for ($name0, $($name,)*) {
fn write(&self, out: &mut Output) {
self.0.write(out);
$(
out.put(b' ');
self.$id.write(out);
)*
}
}
}
}
tuple_writable! {T}
tuple_writable! {T U:1}
tuple_writable! {T U:1 V:2}
tuple_writable! {T U:1 V:2 X:3}
tuple_writable! {T U:1 V:2 X:3 Y:4}
tuple_writable! {T U:1 V:2 X:3 Y:4 Z:5}
tuple_writable! {T U:1 V:2 X:3 Y:4 Z:5 A:6}
tuple_writable! {T U:1 V:2 X:3 Y:4 Z:5 A:6 B:7}
impl<T: Writable> Writable for Option<T> {
fn write(&self, output: &mut Output) {
match self {
None => (-1).write(output),
Some(t) => t.write(output),
}
}
}
impl Writable for bool {
fn write(&self, output: &mut Output) {
let bool_output = output.bool_output;
bool_output.output(output, *self)
}
}
static mut ERR: Option<Stderr> = None;
pub fn err() -> Output<'static> {
unsafe {
if ERR.is_none() {
ERR = Some(stderr());
}
Output::new_with_auto_flush(ERR.as_mut().unwrap())
}
}
}
}
pub mod misc {
pub mod recursive_function {
use std::marker::PhantomData;
macro_rules! recursive_function {
($name: ident, $trait: ident, ($($type: ident $arg: ident,)*)) => {
pub trait $trait<$($type, )*Output> {
fn call(&mut self, $($arg: $type,)*) -> Output;
}
pub struct $name<F, $($type, )*Output>
where
F: FnMut(&mut dyn $trait<$($type, )*Output>, $($type, )*) -> Output,
{
f: std::cell::UnsafeCell<F>,
$($arg: PhantomData<$type>,
)*
phantom_output: PhantomData<Output>,
}
impl<F, $($type, )*Output> $name<F, $($type, )*Output>
where
F: FnMut(&mut dyn $trait<$($type, )*Output>, $($type, )*) -> Output,
{
pub fn new(f: F) -> Self {
Self {
f: std::cell::UnsafeCell::new(f),
$($arg: Default::default(),
)*
phantom_output: Default::default(),
}
}
}
impl<F, $($type, )*Output> $trait<$($type, )*Output> for $name<F, $($type, )*Output>
where
F: FnMut(&mut dyn $trait<$($type, )*Output>, $($type, )*) -> Output,
{
fn call(&mut self, $($arg: $type,)*) -> Output {
unsafe { (*self.f.get())(self, $($arg, )*) }
}
}
}
}
recursive_function!(RecursiveFunction0, Callable0, ());
recursive_function!(RecursiveFunction, Callable, (Arg arg,));
recursive_function!(RecursiveFunction2, Callable2, (Arg1 arg1, Arg2 arg2,));
recursive_function!(RecursiveFunction3, Callable3, (Arg1 arg1, Arg2 arg2, Arg3 arg3,));
recursive_function!(RecursiveFunction4, Callable4, (Arg1 arg1, Arg2 arg2, Arg3 arg3, Arg4 arg4,));
recursive_function!(RecursiveFunction5, Callable5, (Arg1 arg1, Arg2 arg2, Arg3 arg3, Arg4 arg4, Arg5 arg5,));
recursive_function!(RecursiveFunction6, Callable6, (Arg1 arg1, Arg2 arg2, Arg3 arg3, Arg4 arg4, Arg5 arg5, Arg6 arg6,));
recursive_function!(RecursiveFunction7, Callable7, (Arg1 arg1, Arg2 arg2, Arg3 arg3, Arg4 arg4, Arg5 arg5, Arg6 arg6, Arg7 arg7,));
recursive_function!(RecursiveFunction8, Callable8, (Arg1 arg1, Arg2 arg2, Arg3 arg3, Arg4 arg4, Arg5 arg5, Arg6 arg6, Arg7 arg7, Arg8 arg8,));
recursive_function!(RecursiveFunction9, Callable9, (Arg1 arg1, Arg2 arg2, Arg3 arg3, Arg4 arg4, Arg5 arg5, Arg6 arg6, Arg7 arg7, Arg8 arg8, Arg9 arg9,));
}
}
pub mod numbers {
pub mod num_traits {
pub mod add_sub {
use std::ops::{Add, AddAssign, Sub, SubAssign};
pub trait Addable: Add<Output = Self> + AddAssign + Copy {}
impl<T: Add<Output = Self> + AddAssign + Copy> Addable for T {}
pub trait AddSub: Addable + Sub<Output = Self> + SubAssign {}
impl<T: Addable + Sub<Output = Self> + SubAssign> AddSub for T {}
}
pub mod bit_ops {
use crate::numbers::num_traits::zero_one::ZeroOne;
use std::ops::{BitAnd, BitAndAssign, BitOr, BitOrAssign, BitXor, BitXorAssign, Not, RangeInclusive, Shl,};
use std::ops::{ShlAssign, Shr, ShrAssign};
pub trait BitOps:
Copy
+ BitAnd<Output = Self>
+ BitAndAssign
+ BitOr<Output = Self>
+ BitOrAssign
+ BitXor<Output = Self>
+ BitXorAssign
+ Not<Output = Self>
+ Shl<usize, Output = Self>
+ ShlAssign<usize>
+ Shr<usize, Output = Self>
+ ShrAssign<usize>
+ ZeroOne
+ PartialEq
{
fn bit(at: usize) -> Self {
Self::one() << at
}
fn is_set(&self, at: usize) -> bool {
(*self >> at & Self::one()) == Self::one()
}
fn set_bit(&mut self, at: usize) {
*self |= Self::bit(at)
}
fn unset_bit(&mut self, at: usize) {
*self &= !Self::bit(at)
}
#[must_use]
fn with_bit(mut self, at: usize) -> Self {
self.set_bit(at);
self
}
#[must_use]
fn without_bit(mut self, at: usize) -> Self {
self.unset_bit(at);
self
}
fn flip_bit(&mut self, at: usize) {
*self ^= Self::bit(at)
}
fn all_bits(n: usize) -> Self {
let mut res = Self::zero();
for i in 0..n {
res.set_bit(i);
}
res
}
fn iter_all(n: usize) -> RangeInclusive<Self> {
Self::zero()..=Self::all_bits(n)
}
}
impl<
T: Copy
+ BitAnd<Output = Self>
+ BitAndAssign
+ BitOr<Output = Self>
+ BitOrAssign
+ BitXor<Output = Self>
+ BitXorAssign
+ Not<Output = Self>
+ Shl<usize, Output = Self>
+ ShlAssign<usize>
+ Shr<usize, Output = Self>
+ ShrAssign<usize>
+ ZeroOne
+ PartialEq,
> BitOps for T
{
}
pub trait Bits: BitOps {
fn bits() -> u32;
}
macro_rules! bits_integer_impl {
($($t: ident $bits: expr),+) => {$(
impl Bits for $t {
fn bits() -> u32 {
$bits
}
}
)+};
}
bits_integer_impl!(i128 128, i64 64, i32 32, i16 16, i8 8, isize 64, u128 128, u64 64, u32 32, u16 16, u8 8, usize 64);
}
pub mod zero_one {
pub trait ZeroOne {
fn zero() -> Self;
fn one() -> Self;
}
macro_rules! zero_one_integer_impl {
($($t: ident)+) => {$(
impl ZeroOne for $t {
fn zero() -> Self {
0
}
fn one() -> Self {
1
}
}
)+};
}
zero_one_integer_impl!(i128 i64 i32 i16 i8 isize u128 u64 u32 u16 u8 usize);
}
}
}
fn main() {
let mut sin = std::io::stdin();
let input = if false {
io::input::Input::new_with_size(&mut sin, 1)
} else {
io::input::Input::new(&mut sin)
};
let mut stdout = std::io::stdout();
let output = if false {
io::output::Output::new_with_auto_flush(&mut stdout)
} else {
io::output::Output::new(&mut stdout)
};
solution::run(input, output);
}
详细
error[E0405]: cannot find trait `FromIterator` in this scope --> answer.code:346:32 | 346 | impl<K: Hash + Eq, V: Default> FromIterator<(K, V)> for DefaultHashMap<K, V> { | ^^^^^^^^^^^^ | = note: 'std::iter::FromIterator' is included in the prelude starting in Edition 2021 help: a trait with a similar name exists | 346 | impl<K: Hash + Eq, V: Default> IntoIterator<(K, V)> for DefaultHashMap<K, V> { | ~~~~~~~~~~~~ help: consider importing this trait | 280 | use std::iter::FromIterator; | error: aborting due to previous error For more information about this error, try `rustc --explain E0405`.