QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#226152 | #7613. Inverse Problem | hos_lyric | AC ✓ | 26374ms | 861528kb | C++14 | 7.9kb | 2023-10-25 16:58:16 | 2023-10-25 16:58:31 |
Judging History
answer
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using Int = long long;
template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")
////////////////////////////////////////////////////////////////////////////////
template <unsigned M_> struct ModInt {
static constexpr unsigned M = M_;
unsigned x;
constexpr ModInt() : x(0U) {}
constexpr ModInt(unsigned x_) : x(x_ % M) {}
constexpr ModInt(unsigned long long x_) : x(x_ % M) {}
constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }
ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
ModInt pow(long long e) const {
if (e < 0) return inv().pow(-e);
ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
}
ModInt inv() const {
unsigned a = M, b = x; int y = 0, z = 1;
for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
assert(a == 1U); return ModInt(y);
}
ModInt operator+() const { return *this; }
ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
explicit operator bool() const { return x; }
bool operator==(const ModInt &a) const { return (x == a.x); }
bool operator!=(const ModInt &a) const { return (x != a.x); }
friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
////////////////////////////////////////////////////////////////////////////////
constexpr unsigned MO = 1000000007;
using Mint = ModInt<MO>;
using Mint1 = ModInt<MO - 1>;
constexpr int S = ceil(sqrt(MO));
constexpr Mint G = 5;
Mint H;
pair<unsigned, int> baby[S + 1];
void init() {
H = 1;
for (int i = 0; i < S; ++i) {
baby[i] = make_pair(H.x, i);
H *= G;
}
sort(baby, baby + S);
baby[S] = make_pair(~0U, -1);
H = H.inv();
}
int modLog(Mint a) {
for (int i = 0; i < S; ++i) {
const int pos = lower_bound(baby, baby + S, make_pair(a.x, -1)) - baby;
if (baby[pos].first == a.x) {
return i * S + baby[pos].second;
}
a *= H;
}
assert(false);
}
constexpr int LIM = 210;
int lpf[LIM];
Mint1 LOG[LIM];
int T;
vector<Mint> R;
vector<Mint1> logR;
vector<int> Ns;
vector<vector<pair<int, int>>> ANSs;
int N;
Mint1 W[LIM];
constexpr int K = 5;
bitset<MO - 1> has;
vector<pair<unsigned, __int128>> small[LIM], large[LIM];
#ifdef LOCAL
int counterSmall, counterLarge;
#endif
void dfsSmall(int m, int last, Mint1 w, __int128 p) {
#ifdef LOCAL
++counterSmall;
#endif
small[N - 2 - m].emplace_back(w.x, p);
for (int a = min(m, last); a >= 1; --a) {
dfsSmall(m - a, a, w + W[a], p << a | 1);
}
}
void dfsLarge(int m, int last, Mint1 w, __int128 p) {
#ifdef LOCAL
++counterLarge;
#endif
large[N - 2 - m].emplace_back(w.x, p);
for (int a = min(m, last); a > K; --a) {
dfsLarge(m - a, a, w + W[a], p << a | 1);
}
}
void recover(int t, __int128 p0, __int128 p1) {
vector<int> ds;
for (const __int128 p : {p0, p1}) {
int a = 0;
for (__int128 q = p; q >>= 1; ) {
++a;
if (q & 1) {
ds.push_back(a);
a = 0;
}
}
}
sort(ds.begin(), ds.end(), greater<int>{});
ds.resize(N - 1, 0);
Ns[t] = N;
int b = 1;
for (int a = 0; a < N; ++a) {
const int deg = a ? ds[a - 1] : 1;
for (int j = 0; j < deg; ++j) {
ANSs[t].emplace_back(a, b);
++b;
}
}
assert(b == N);
}
void solve() {
if (N == 1) {
for (int t = 0; t < T; ++t) if (!Ns[t]) {
if (R[t] == 1) {
Ns[t] = 1;
}
}
return;
}
// rooted degree d: (N-2)(N-3)...
W[0] = 0;
for (int d = 0; d < N - 2; ++d) {
W[d + 1] = W[d] + LOG[N - 2 - d];
}
#ifdef LOCAL
counterSmall=counterLarge=0;
#endif
for (int n = 0; n <= N - 2; ++n) {
small[n].clear();
large[n].clear();
}
dfsSmall(N - 2, K, 0, 1);
dfsLarge(N - 2, N - 2, 0, 1);
#ifdef LOCAL
cerr<<"N = "<<N<<": counterSmall = "<<counterSmall<<", counterLarge = "<<counterLarge<<endl;
#endif
for (int n0 = 0; n0 <= N - 2; ++n0) {
const int n1 = N - 2 - n0;
for (const auto &wp0 : small[n0]) has.set(wp0.first);
for (int t = 0; t < T; ++t) if (!Ns[t]) {
const Mint1 tar = logR[t] - LOG[N] - LOG[N - 1];
for (const auto &wp1 : large[n1]) {
const unsigned key = (tar - wp1.first).x;
if (has[key]) {
for (const auto &wp0 : small[n0]) if (wp0.first == key) {
recover(t, wp0.second, wp1.second);
break;
}
break;
}
}
}
for (const auto &wp0 : small[n0]) has.reset(wp0.first);
}
}
int main() {
init();
for (int p = 2; p < LIM; ++p) lpf[p] = p;
for (int p = 2; p < LIM; ++p) if (lpf[p] == p) {
for (int n = p; n < LIM; n += p) chmin(lpf[n], p);
}
LOG[1] = 0;
for (int n = 2; n < LIM; ++n) {
const int p = lpf[n];
LOG[n] = (n == p) ? modLog(n) : (LOG[p] + LOG[n / p]);
}
// for(int n=1;n<LIM;++n)assert(G.pow(LOG[n].x)==n);
for (; ~scanf("%d", &T); ) {
R.resize(T);
for (int t = 0; t < T; ++t) {
scanf("%u", &R[t].x);
}
logR.assign(T, 0);
for (int t = 0; t < T; ++t) {
logR[t] = modLog(R[t]);
}
Ns.assign(T, 0);
ANSs.assign(T, {});
for (N = 1; N <= 129; ++N) {
bool yet = false;
for (int t = 0; t < T; ++t) yet = yet || !Ns[t];
if (!yet) break;
solve();
}
for (int t = 0; t < T; ++t) {
printf("%d\n", Ns[t]);
for (const auto &e : ANSs[t]) {
printf("%d %d\n", e.first + 1, e.second + 1);
}
}
}
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 63ms
memory: 88012kb
input:
4 2 360 1 509949433
output:
2 1 2 5 1 2 2 3 2 4 3 5 1 10 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10
result:
ok OK (4 test cases)
Test #2:
score: 0
Accepted
time: 12670ms
memory: 861528kb
input:
9 185396120 468170792 837583517 696626231 338497514 762842660 800028852 928391161 733524004
output:
14 1 2 2 3 2 4 3 5 3 6 4 7 5 8 6 9 7 10 8 11 9 12 10 13 11 14 122 1 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 2 26 2 27 2 28 2 29 2 30 2 31 3 32 3 33 3 34 3 35 3 36 3 37 3 38 3 39 3 40 3 41 3 42 3 43 3 44 3 45 4 46 4 47 4 48 4 49 4 ...
result:
ok OK (9 test cases)
Test #3:
score: 0
Accepted
time: 26374ms
memory: 859660kb
input:
10 338497514 733524004 447182954 415993605 453460670 50499055 648088551 986982752 907925397 315315230
output:
124 1 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 2 26 2 27 2 28 2 29 2 30 2 31 2 32 2 33 2 34 2 35 2 36 3 37 3 38 3 39 3 40 3 41 3 42 3 43 3 44 3 45 3 46 3 47 3 48 3 49 3 50 3 51 4 52 4 53 4 54 4 55 4 56 4 57 4 58 4 59 4 60 5 61 5 62...
result:
ok OK (10 test cases)
Test #4:
score: 0
Accepted
time: 1981ms
memory: 272912kb
input:
10 1 2 3 4 5 6 7 8 9 10
output:
1 2 1 2 102 1 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 26 3 27 3 28 3 29 3 30 3 31 3 32 3 33 3 34 3 35 3 36 3 37 3 38 3 39 3 40 3 41 3 42 3 43 4 44 4 45 4 46 4 47 4 48 4 49 4 50 4 51 4 52 4 53 4 54 4 55 4 56 5 57 5 58 5 59 5 60 5...
result:
ok OK (10 test cases)
Test #5:
score: 0
Accepted
time: 649ms
memory: 173424kb
input:
10 269199917 392009324 753889928 751355133 472639410 132096559 331333826 40414701 72847302 475706026
output:
55 1 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 2 26 2 27 2 28 2 29 2 30 2 31 2 32 2 33 2 34 2 35 2 36 2 37 2 38 2 39 2 40 2 41 2 42 2 43 2 44 2 45 2 46 2 47 2 48 2 49 2 50 2 51 2 52 2 53 2 54 2 55 84 1 2 2 3 2 4 2 5 2 6 2 7 2 8 3 9 ...
result:
ok OK (10 test cases)
Extra Test:
score: 0
Extra Test Passed