#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#include<iostream>
#include<string>
#include<cstdio>
#include<vector>
#include<cmath>
#include<algorithm>
#include<functional>
#include<iomanip>
#include<queue>
#include<ciso646>
#include<random>
#include<map>
#include<set>
#include<bitset>
#include<stack>
#include<unordered_map>
#include<unordered_set>
#include<utility>
#include<cassert>
#include<complex>
#include<numeric>
#include<array>
#include<chrono>
using namespace std;
//#define int long long
typedef long long ll;
typedef unsigned long long ul;
typedef unsigned int ui;
//ll mod = 1;
//constexpr ll mod = 998244353;
constexpr ll mod = 1000000007;
const int mod17 = 1000000007;
const ll INF = mod * mod;
typedef pair<int, int>P;
#define rep(i,n) for(int i=0;i<n;i++)
#define per(i,n) for(int i=n-1;i>=0;i--)
#define Rep(i,sta,n) for(int i=sta;i<n;i++)
#define rep1(i,n) for(int i=1;i<=n;i++)
#define per1(i,n) for(int i=n;i>=1;i--)
#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)
#define all(v) (v).begin(),(v).end()
typedef pair<ll, ll> LP;
using ld = double;
typedef pair<ld, ld> LDP;
const ld eps = 1e-10;
const ld pi = acosl(-1.0);
template<typename T>
void chmin(T& a, T b) {
a = min(a, b);
}
template<typename T>
void chmax(T& a, T b) {
a = max(a, b);
}
template<typename T>
vector<T> vmerge(vector<T>& a, vector<T>& b) {
vector<T> res;
int ida = 0, idb = 0;
while (ida < a.size() || idb < b.size()) {
if (idb == b.size()) {
res.push_back(a[ida]); ida++;
}
else if (ida == a.size()) {
res.push_back(b[idb]); idb++;
}
else {
if (a[ida] < b[idb]) {
res.push_back(a[ida]); ida++;
}
else {
res.push_back(b[idb]); idb++;
}
}
}
return res;
}
template<typename T>
void cinarray(vector<T>& v) {
rep(i, v.size())cin >> v[i];
}
template<typename T>
void coutarray(vector<T>& v) {
rep(i, v.size()) {
if (i > 0)cout << " "; cout << v[i];
}
cout << "\n";
}
ll mod_pow(ll x, ll n, ll m = mod) {
if (n < 0) {
ll res = mod_pow(x, -n, m);
return mod_pow(res, m - 2, m);
}
if (abs(x) >= m)x %= m;
if (x < 0)x += m;
//if (x == 0)return 0;
ll res = 1;
while (n) {
if (n & 1)res = res * x % m;
x = x * x % m; n >>= 1;
}
return res;
}
//mod should be <2^31
struct modint {
int n;
modint() :n(0) { ; }
modint(ll m) {
if (m < 0 || mod <= m) {
m %= mod; if (m < 0)m += mod;
}
n = m;
}
operator int() { return n; }
};
bool operator==(modint a, modint b) { return a.n == b.n; }
bool operator<(modint a, modint b) { return a.n < b.n; }
modint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= (int)mod; return a; }
modint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += (int)mod; return a; }
modint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }
modint operator+(modint a, modint b) { return a += b; }
modint operator-(modint a, modint b) { return a -= b; }
modint operator*(modint a, modint b) { return a *= b; }
modint operator^(modint a, ll n) {
if (n == 0)return modint(1);
modint res = (a * a) ^ (n / 2);
if (n % 2)res = res * a;
return res;
}
ll inv(ll a, ll p) {
return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);
}
modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }
modint operator/=(modint& a, modint b) { a = a / b; return a; }
const int max_n = 1 << 20;
modint fact[max_n], factinv[max_n];
void init_f() {
fact[0] = modint(1);
for (int i = 0; i < max_n - 1; i++) {
fact[i + 1] = fact[i] * modint(i + 1);
}
factinv[max_n - 1] = modint(1) / fact[max_n - 1];
for (int i = max_n - 2; i >= 0; i--) {
factinv[i] = factinv[i + 1] * modint(i + 1);
}
}
modint comb(int a, int b) {
if (a < 0 || b < 0 || a < b)return 0;
return fact[a] * factinv[b] * factinv[a - b];
}
modint combP(int a, int b) {
if (a < 0 || b < 0 || a < b)return 0;
return fact[a] * factinv[a - b];
}
ll gcd(ll a, ll b) {
a = abs(a); b = abs(b);
if (a < b)swap(a, b);
while (b) {
ll r = a % b; a = b; b = r;
}
return a;
}
template<typename T>
void addv(vector<T>& v, int loc, T val) {
if (loc >= v.size())v.resize(loc + 1, 0);
v[loc] += val;
}
/*const int mn = 2000005;
bool isp[mn];
vector<int> ps;
void init() {
fill(isp + 2, isp + mn, true);
for (int i = 2; i < mn; i++) {
if (!isp[i])continue;
ps.push_back(i);
for (int j = 2 * i; j < mn; j += i) {
isp[j] = false;
}
}
}*/
//[,val)
template<typename T>
auto prev_itr(set<T>& st, T val) {
auto res = st.lower_bound(val);
if (res == st.begin())return st.end();
res--; return res;
}
//[val,)
template<typename T>
auto next_itr(set<T>& st, T val) {
auto res = st.lower_bound(val);
return res;
}
using mP = pair<modint, modint>;
mP operator+(mP a, mP b) {
return { a.first + b.first,a.second + b.second };
}
mP operator+=(mP& a, mP b) {
a = a + b; return a;
}
mP operator-(mP a, mP b) {
return { a.first - b.first,a.second - b.second };
}
mP operator-=(mP& a, mP b) {
a = a - b; return a;
}
LP operator+(LP a, LP b) {
return { a.first + b.first,a.second + b.second };
}
LP operator+=(LP& a, LP b) {
a = a + b; return a;
}
LP operator-(LP a, LP b) {
return { a.first - b.first,a.second - b.second };
}
LP operator-=(LP& a, LP b) {
a = a - b; return a;
}
mt19937 mt(time(0));
const string drul = "DRUL";
string senw = "SENW";
//DRUL,or SENW
//int dx[4] = { 1,0,-1,0 };
//int dy[4] = { 0,1,0,-1 };
//------------------------------------
#define ftt function<T(T,T)>
#define ftu function<T(T,U,int,int)>
#define fuu function<U(U,U)>
template<typename T, typename U>
struct SegT {
private:
int n;
vector<T> node;
vector<U> lazy;
T et; U eu;
ftt f;
ftu g;
fuu h;
public:
void init(vector<T> ori, T _et, U _eu, ftt _f, ftu _g, fuu _h) {
int sz = ori.size();
et = _et, eu = _eu; f = _f, g = _g, h = _h;
n = 1;
while (n < sz)n <<= 1;
node.resize(2 * n - 1, et);
lazy.resize(2 * n - 1, eu);
rep(i, sz) {
node[i + n - 1] = ori[i];
}
per(i, n - 1) {
node[i] = f(node[2 * i + 1], node[2 * i + 2]);
}
}
SegT() { ; }
void init(int sz, T _et, U _eu, ftt _f, ftu _g, fuu _h) {
et = _et, eu = _eu; f = _f, g = _g, h = _h;
n = 1;
while (n < sz)n <<= 1;
node.resize(2 * n - 1, et);
lazy.resize(2 * n - 1, eu);
}
void eval(int k, int l, int r) {
if (lazy[k] == eu)return;
node[k] = g(node[k], lazy[k], l, r);
if (r - l > 1) {
lazy[2 * k + 1] = h(lazy[k], lazy[2 * k + 1]);
lazy[2 * k + 2] = h(lazy[k], lazy[2 * k + 2]);
}
lazy[k] = eu;
}
void add(U x, int a, int b, int k = 0, int l = 0, int r = -1) {
if (r < 0)r = n;
eval(k, l, r);
if (r <= a || b <= l)return;
if (a <= l && r <= b) {
lazy[k] = h(x, lazy[k]);
eval(k, l, r);
}
else {
add(x, a, b, k * 2 + 1, l, (l + r) / 2);
add(x, a, b, k * 2 + 2, (l + r) / 2, r);
node[k] = f(node[k * 2 + 1], node[k * 2 + 2]);
}
}
T query(int a, int b, int k = 0, int l = 0, int r = -1) {
if (r < 0)r = n;
eval(k, l, r);
if (r <= a || b <= l)return et;
if (a <= l && r <= b)return node[k];
else {
T vl = query(a, b, k * 2 + 1, l, (l + r) / 2);
T vr = query(a, b, k * 2 + 2, (l + r) / 2, r);
return f(vl, vr);
}
}
void update(int loc, T x) {
int k = 0, l = 0, r = n;
stack<P> st;
while (k < n - 1) {
eval(k, l, r);
st.push({ l,r });
if (loc < (l + r) / 2) {
k = 2 * k + 1;
r = (l + r) / 2;
}
else {
k = 2 * k + 2;
l = (l + r) / 2;
}
}
eval(k, l, r);
st.push({ l,r });
node[k] = x;
while (k > 0) {
k = (k - 1) / 2;
st.pop();
l = st.top().first, r = st.top().second;
eval(2 * k + 1, l, (l + r) / 2);
eval(2 * k + 2, (l + r) / 2, r);
node[k] = f(node[2 * k + 1], node[2 * k + 2]);
}
}
//k以上でf(x,node[y+sz-1])をtrueにするような最小のy
int searchloc(int le, T x, function<bool(T, T)> comp) {
int k = 0, l = 0, r = n;
while (k < n - 1) {
eval(k, l, r);
int m = (l + r) / 2;
if (le < m) {
k = 2 * k + 1; r = m;
}
else {
k = 2 * k + 2; l = m;
}
}
assert(k == le + n - 1);
eval(k, l, r);
if (comp(x, node[k]))return le;
//x=f(x,node[k]);
while (k > 0) {
int mem = k;
k = (k - 1) / 2;
if (2 * k + 1 == mem) {
r += r - l;
}
else {
l -= r - l;
}
if (2 * k + 1 == mem) {
eval(2 * k + 2, (l + r) / 2, r);
if (comp(x, node[2 * k + 2])) {
k = 2 * k + 2;
l = (l + r) / 2;
break;
}
//x=f(x,node[2*k+2]);
}
}
if (k == 0)return n;
while (k < n - 1) {
eval(2 * k + 1, l, (l + r) / 2);
eval(2 * k + 2, (l + r) / 2, r);
if (comp(x, node[2 * k + 1])) {
k = 2 * k + 1;
r = (l + r) / 2;
}
else {
k = 2 * k + 2;
l = (l + r) / 2;
//x=f(x,node[2*k+1]);
}
}
return k - (n - 1);
}
};
function<modint(modint, modint)> f = [&](modint a, modint b) {
return a + b;
};
function<modint(modint, modint, int, int)> g = [&](modint a, modint b, int l, int r) {
a *= b; return a;
};
function<modint(modint, modint)> h = [&](modint a, modint b) {
return a * b;
};
struct edge {
int to;
};
using edges = vector<edge>;
using Graph = vector<edges>;
struct HLDecomposition {
struct Chain {
int depth;
P parent;//chain number,index
vector<P> child;//child chain number,parent index
vector<int> mapfrom;
SegT<modint, modint> stree;
Chain() { ; }
Chain(int n) {
vector<modint> ori(n, 1);
stree.init(ori, 0, 1, f, g, h);
}
};
Graph baseG;
vector<Chain> chains;
vector<P> mapto;//raw index->chain number &index
vector<vector<int>> mapfrom;//chain number & index ->raw index
HLDecomposition() { ; }
HLDecomposition(const Graph& g) {
baseG = g;
const int n = baseG.size();
mapto = vector<P>(n, P{ -1,-1 });
mapfrom.clear();
vector<int> sz(n, 0);
int start = 0;
//int start = -1;
//rep(i, n)if (baseG[i].size() <= 1) { start = i; break; }
//assert(start != -1);
size_check_bfs(start, sz);
decomposition(start, start, 0, 0, 0, sz);
}
int depth(int t) {
return chains[mapto[t].first].depth;
}
private:
void size_check_bfs(int start, vector<int>& sz) {
const int n = baseG.size();
queue<P> que;
que.push({ start,start });
int cnt = 0; vector<int> ord(n, -1);
while (!que.empty()) {
int from, parent;
tie(from, parent) = que.front(); que.pop();
ord[cnt++] = from;
for (edge e : baseG[from]) {
if (e.to == parent)continue;
que.push({ e.to,from });
}
}
//assert(cnt == n);
reverse(all(ord));
rep(i, n) {
int from = ord[i];
sz[from] = 1; for (edge e : baseG[from])sz[from] += sz[e.to];
}
}
int decomposition(int from, int parent, int depth, int pnumber, int pindex, const vector<int>& sz) {
vector<int> seq;
bfs(from, parent, seq, sz);
const int c = chains.size();
chains.push_back(Chain((int)seq.size()));
//chains.push_back(Chain());
chains[c].depth = depth;
chains[c].parent = { pnumber,pindex };
rep(i, seq.size()) {
mapto[seq[i]] = { c,i };
chains[c].mapfrom.push_back(seq[i]);
}
mapfrom.push_back(chains[c].mapfrom);
rep(i, seq.size()) {
for (edge e : baseG[seq[i]]) {
if (mapto[e.to].first != -1)continue;
int nc = decomposition(e.to, seq[i], depth + 1, c, i, sz);
chains[c].child.push_back({ nc,i });
}
}
return c;
}
void bfs(int from, int parent, vector<int>& seq, const vector<int>& sz) {
for (;;) {
seq.push_back(from);
int best = -1, next = -1;
for (edge e : baseG[from]) {
if (e.to == parent)continue;
if (best < sz[e.to]) {
best = sz[e.to]; next = e.to;
}
}
if (next == -1)break;
parent = from; from = next;
}
}
vector<pair<int, P>> all_edge(int u, int v) {
vector<pair<int, P>> res;
if (depth(u) > depth(v))swap(u, v);
while (depth(v) > depth(u)) {
res.push_back({ mapto[v].first,{ 0,mapto[v].second + 1 } });
P par = chains[mapto[v].first].parent;
v = mapfrom[par.first][par.second];
}
while (mapto[v].first != mapto[u].first) {
res.push_back({ mapto[v].first,{ 0,mapto[v].second + 1 } });
P par = chains[mapto[v].first].parent;
v = mapfrom[par.first][par.second];
res.push_back({ mapto[u].first,{ 0,mapto[u].second + 1 } });
par = chains[mapto[u].first].parent;
u = mapfrom[par.first][par.second];
}
P p = minmax(mapto[v].second, mapto[u].second);
res.push_back({ mapto[v].first,{ p.first + 1,p.second + 1 } });
return res;
}
vector<pair<int, P>> all_vertice(int u, int v) {
vector<pair<int, P>> res;
if (depth(u) > depth(v))swap(u, v);
while (depth(v) > depth(u)) {
res.push_back({ mapto[v].first,{ 0,mapto[v].second + 1 } });
P par = chains[mapto[v].first].parent;
v = mapfrom[par.first][par.second];
}
while (mapto[v].first != mapto[u].first) {
res.push_back({ mapto[v].first,{ 0,mapto[v].second + 1 } });
P par = chains[mapto[v].first].parent;
v = mapfrom[par.first][par.second];
res.push_back({ mapto[u].first,{ 0,mapto[u].second + 1 } });
par = chains[mapto[u].first].parent;
u = mapfrom[par.first][par.second];
}
P p = minmax(mapto[v].second, mapto[u].second);
res.push_back({ mapto[v].first,{ p.first,p.second + 1 } });
return res;
}
public:
int lca(int u, int v) {
if (depth(u) > depth(v))swap(u, v);
while (depth(v) > depth(u)) {
P par = chains[mapto[v].first].parent;
v = mapfrom[par.first][par.second];
}
while (mapto[v].first != mapto[u].first) {
P par = chains[mapto[v].first].parent;
v = mapfrom[par.first][par.second];
par = chains[mapto[u].first].parent;
u = mapfrom[par.first][par.second];
}
if (mapto[v].second < mapto[u].second) {
return v;
}
return u;
}
modint vertice_add(int u, int v, modint a) {
modint res = 0;
vector<pair<int, P>> vs = all_vertice(u, v);
rep(i, vs.size()) {
int id = vs[i].first;
int l = vs[i].second.first; int r = vs[i].second.second;
res += chains[id].stree.query(l, r);
chains[id].stree.add(a, l, r);
}
return res;
}
};
void solve() {
int n; cin >> n;
Graph g(n);
rep(i, n - 1) {
int a, b; cin >> a >> b; a--; b--;
g[a].push_back({ b });
g[b].push_back({ a });
}
HLDecomposition hldl(g), hldr(g);
modint sl = n, sr = n;
modint inv2 = (1 + mod) / 2;
int q; cin >> q;
rep(i, q) {
char c; cin >> c;
int a, b; cin >> a >> b; a--; b--;
if (c == '+') {
modint val = hldl.vertice_add(a, b,2);
sl += val;
val = hldr.vertice_add(a, b, 2);
sr += val;
int l = hldr.lca(a, b);
val = hldr.vertice_add(l, l, inv2);
sr -= val * inv2;
}
else {
modint val = hldl.vertice_add(a, b, inv2);
sl -= val*inv2;
val = hldr.vertice_add(a, b, inv2);
sr -= val*inv2;
int l = hldr.lca(a, b);
val = hldr.vertice_add(l, l, 2);
sr += val;
}
modint ans = sl - sr;
cout << ans << "\n";
}
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(0);
//cout << fixed<<setprecision(10);
//init_f();
//init();
//init2();
//while(true)
//expr();
//int t; cin >> t; rep(i, t)
solve();
return 0;
}