QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#153022 | #2447. Domino Covering | joon | AC ✓ | 1ms | 3648kb | C++17 | 10.7kb | 2023-08-29 09:03:01 | 2024-10-07 15:50:45 |
Judging History
answer
#include <bits/stdc++.h>
#ifdef JOON
#define debug(...) fprintf(stderr, __VA_ARGS__)
#else
#define debug(...) 42
#endif
using namespace std;
template<class ModWrapper>
class modular {
private:
using T = typename decay<decltype(ModWrapper::value)>::type;
T value;
public:
using value_type = T;
constexpr modular() : value() {}
constexpr static T mod() {
return ModWrapper::value;
}
template<class V>
static T norm(const V &x) {
T val;
if (x >= static_cast<V>(0)) {
val = static_cast<T>(x < mod() ? x : x % mod());
} else {
val = static_cast<T>(-x <= mod() ? x : x % mod());
if (val < static_cast<T>(0)) {
val += mod();
}
}
return val;
}
template<class V>
modular(const V &x) : value(norm(x)) {}
template<class V>
explicit operator V() const {
return static_cast<V>(value);
}
modular &operator+=(const modular &other) {
if (value < mod() - other.value) {
value += other.value;
} else {
value -= mod() - other.value;
}
return *this;
}
modular &operator-=(const modular &other) {
if (value >= other.value) {
value -= other.value;
} else {
value += mod() - other.value;
}
return *this;
}
template<class V = T>
typename enable_if<(sizeof(V) <= 4), modular>::type &operator*=(const modular &other) {
value = norm(static_cast<int64_t>(value) * static_cast<int64_t>(other.value));
return *this;
}
template<class V = T>
typename enable_if<(sizeof(V) > 4 && sizeof(V) <= 8), modular>::type &operator*=(const modular &other) {
using i128 = __int128;
value = norm(static_cast<i128>(value) * static_cast<i128>(other.value));
return *this;
}
modular inverse() const {
T u = static_cast<T>(0), v = static_cast<T>(1);
T a = value, m = mod();
while (a != static_cast<T>(0)) {
T t = m / a;
m -= t * a;
swap(a, m);
u -= t * v;
swap(u, v);
}
assert(m == 1);
return modular(u);
}
modular &operator/=(const modular &other) {
return *this *= other.inverse();
}
modular operator+(const modular &other) const {
return modular(*this) += other;
}
modular operator-(const modular &other) const {
return modular(*this) -= other;
}
modular operator*(const modular &other) const {
return modular(*this) *= other;
}
modular operator/(const modular &other) const {
return modular(*this) /= other;
}
bool operator==(const modular &other) const {
return value == other.value;
}
bool operator!=(const modular &other) const {
return !(*this == other);
}
template<class V>
modular pow(const V &b) {
bool inv = b < static_cast<V>(0);
modular res(static_cast<T>(1));
modular x(inv ? inverse() : *this);
V p = inv ? -b : b;
while (p > static_cast<V>(0)) {
if (p & 1) {
res *= x;
}
x *= x;
p >>= 1;
}
return res;
}
template<class V> modular &operator+=(const V &other) { return *this += modular(other); }
template<class V> modular &operator-=(const V &other) { return *this -= modular(other); }
template<class V> modular &operator*=(const V &other) { return *this *= modular(other); }
template<class V> modular &operator/=(const V &other) { return *this /= modular(other); }
template<class V> modular operator+(const V &other) const { return *this + modular(other); }
template<class V> modular operator-(const V &other) const { return *this - modular(other); }
template<class V> modular operator*(const V &other) const { return *this * modular(other); }
template<class V> modular operator/(const V &other) const { return *this / modular(other); }
modular &operator++() { return *this += 1; }
modular &operator--() { return *this -= 1; }
modular operator++(int) { modular res(*this); *this += 1; return res; }
modular operator--(int) { modular res(*this); *this -= 1; return res; }
modular operator-() const { return modular(-value); }
T operator()() const { return value; }
template<class W>
friend istream &operator>>(istream &in, modular<W> &n);
};
template<class V, class W> modular<W> operator+(const V &lhs, const modular<W> &rhs) { return modular<W>(lhs) + rhs; }
template<class V, class W> modular<W> operator-(const V &lhs, const modular<W> &rhs) { return modular<W>(lhs) - rhs; }
template<class V, class W> modular<W> operator*(const V &lhs, const modular<W> &rhs) { return modular<W>(lhs) * rhs; }
template<class V, class W> modular<W> operator/(const V &lhs, const modular<W> &rhs) { return modular<W>(lhs) / rhs; }
template<class V, class W> bool operator==(const V &lhs, const modular<W> &rhs) { return modular<W>(lhs) == rhs; }
template<class V, class W> bool operator!=(const V &lhs, const modular<W> &rhs) { return modular<W>(lhs) != rhs; }
template<class W>
ostream &operator<<(ostream &out, const modular<W> &n) {
return out << n();
}
template<class W>
istream &operator>>(istream &in, modular<W> &n) {
typename common_type<typename modular<W>::value_type, int64_t>::type x;
in >> x;
n.value = modular<W>::norm(x);
return in;
}
struct varmod {
static int value;
};
int varmod::value;
int &md = varmod::value;
using Mint = modular<varmod>;
template<class T>
class matrix {
public:
int n, m;
vector<vector<T>> entry;
matrix(int n_, int m_) : n(n_), m(m_), entry(n_, vector<T>(m_)) {}
matrix(int n_) : matrix(n_, n_) {}
T& operator[](const pair<int, int>& p) {
return entry[p.first][p.second];
}
const T& operator[](const pair<int, int>& p) const {
return entry[p.first][p.second];
}
};
template<class T>
matrix<T> matmul(const matrix<T>& A, const matrix<T>& B) {
assert(A.m == B.n);
matrix<T> C(A.n, B.m);
for (int i = 0; i < C.n; i++) {
for (int k = 0; k < A.m; k++) {
for (int j = 0; j < C.m; j++) {
C[{i, j}] += A[{i, k}] * B[{k, j}];
}
}
}
return C;
}
using poly = vector<Mint>;
void polyadd(poly &p, const poly &q, size_t sh = 0, Mint mt = 1) {
p.resize(max(p.size(), q.size() + sh));
for (int i = 0; i < (int)q.size(); i++) {
p[i + sh] += q[i] * mt;
}
while (!p.empty() && p.back() == 0) {
p.pop_back();
}
}
poly polymul(const poly &p, const poly &q) {
if (p.empty() || q.empty()) {
return {};
}
int pd = (int)p.size() - 1, qd = (int)q.size() - 1;
poly res(pd + qd + 1);
for (int i = 0; i <= pd; i++) {
for (int j = 0; j <= qd; j++) {
res[i + j] += p[i] * q[j];
}
}
return res;
}
void polymod(poly &p, const poly &m) {
while (p.size() >= m.size()) {
polyadd(p, m, p.size() - m.size(), -p.back() / m.back());
}
}
poly &operator+=(poly &p, const poly &q) {
polyadd(p, q);
return p;
}
poly f_A;
poly operator*(const poly &p, const poly &q) {
auto res = polymul(p, q);
polymod(res, f_A);
return res;
}
template<class T>
matrix<T> matpow(matrix<T> A, long long r) {
assert(A.n == A.m);
matrix<T> R(A.n);
for (int i = 0; i < A.n; i++) {
R[{i, i}] = {1};
}
while (r) {
if (r & 1) {
R = matmul(R, A);
}
A = matmul(A, A);
r >>= 1;
}
return R;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(NULL);
int tt;
cin >> tt;
array<array<vector<int>, 18>, 2> D;
D[0][0] = D[1][0] = {1};
D[0][1] = {-1, 1};
D[1][1] = {-2, 1};
for (int i = 2; i <= 17; i++) {
for (auto &dp : D) {
dp[i].resize(i + 1);
dp[i][i] = 1;
for (int j = 0; j < i; j++) {
dp[i][j] = -2 * dp[i - 1][j];
if (j) {
dp[i][j] += dp[i - 1][j - 1];
}
if (j < i - 1) {
dp[i][j] -= dp[i - 2][j];
}
}
}
}
while (tt--) {
long long n;
int m;
cin >> m >> n >> md;
if (n & m & 1) {
cout << "0\n";
continue;
}
if (m == 1) {
cout << "1\n";
continue;
} else if (m == 2) {
matrix<Mint> C(2);
C[{0, 0}] = C[{0, 1}] = C[{1, 0}] = 1;
cout << matpow(C, n)[{0, 0}] << "\n";
continue;
} else if (m == 3) {
matrix<Mint> C(2);
C[{0, 0}] = 4;
C[{0, 1}] = -1;
C[{1, 0}] = 1;
auto R = matpow(C, n >> 1);
cout << R[{0, 0}] + R[{0, 1}] << "\n";
continue;
} else if (m == 4) {
matrix<Mint> C(4);
C[{0, 0}] = C[{0, 2}] = C[{1, 0}] = C[{2, 1}] = C[{3, 2}] = 1;
C[{0, 1}] = 5;
C[{0, 3}] = -1;
auto R = matpow(C, n);
cout << 5 * R[{2, 0}] + R[{2, 1}] + R[{2, 2}] << "\n";
continue;
} else if (m == 5) {
matrix<Mint> C(4);
C[{1, 0}] = C[{2, 1}] = C[{3, 2}] = 1;
C[{0, 0}] = C[{0, 2}] = 15;
C[{0, 1}] = -32;
C[{0, 3}] = -1;
auto R = matpow(C, n >> 1);
cout << 1183 * R[{3, 0}] + 95 * R[{3, 1}] + 8 * R[{3, 2}] + R[{3, 3}] << "\n";
continue;
}
f_A.resize((m >> 1) + 1);
for (int i = 0; i <= (m >> 1); i++) {
f_A[i] = D[m & 1][m >> 1][i];
}
matrix<poly> M(2);
M[{0, 0}] = {2, 1};
M[{0, 1}] = {-1};
M[{1, 0}] = {1};
auto R = matpow(M, n >> 1);
auto f_B = R[{0, 0}];
if (~n & 1) {
polyadd(f_B, R[{0, 1}]);
}
Mint res = 1;
while ((int)f_B.size() > 1) {
swap(f_A, f_B);
if (~f_A.size() & ~f_B.size() & 1) {
res = -res;
}
auto e = f_B.size();
polymod(f_B, f_A);
res *= f_A.back().pow(e - f_B.size());
}
if (!f_B.empty()) {
res *= f_B[0].pow(f_A.size() - 1);
} else {
res = 0;
}
cout << res << "\n";
}
return 0;
}
这程序好像有点Bug,我给组数据试试?
详细
Test #1:
score: 100
Accepted
time: 1ms
memory: 3648kb
input:
6 2 2 23 2 3 233 3 3 2333 3 4 23333 4 4 2332333 5 251346744251346744 998244353
output:
2 3 0 11 36 295381485
result:
ok 6 lines