QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#137670 | #2350. Integer Cow | 4k2kok | WA | 7ms | 3740kb | C++20 | 2.7kb | 2023-08-10 16:26:18 | 2023-08-10 16:26:22 |
Judging History
answer
#include<bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define PI acos(-1)
#define io ios::sync_with_stdio(false); cin.tie(0); cout.tie(0)
#define mem(a,b) memset((a),(b),sizeof(a))
typedef long long ll;
typedef unsigned long long ull;
#define int long long
#define db long double
const double eps = 1e-6;
const int mod = 1e9 + 7;
const int maxn = 1e5 + 10;
struct point {
double x, y;
};
// typedef struct point point;
double xmult(point p1, point p2, point p0) {
return (p1.x - p0.x) * (p2.y - p0.y) - (p2.x - p0.x) * (p1.y - p0.y);
}
double distance(point p1, point p2) {
return sqrt((p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y));
}
//点到直线的距离
double disptoline(point p, point l1, point l2) {
return fabs(xmult(p, l1, l2)) / distance(l1, l2);
}
//求两直线交点
point intersection(point u1, point u2, point v1, point v2) {
point ret = u1;
double t = ((u1.x - v1.x) * (v1.y - v2.y) - (u1.y - v1.y) * (v1.x - v2.x))
/ ((u1.x - u2.x) * (v1.y - v2.y) - (u1.y - u2.y) * (v1.x - v2.x));
ret.x += (u2.x - u1.x) * t;
ret.y += (u2.y - u1.y) * t;
return ret;
}
void intersection_line_circle(point c, double r, point l1, point l2, point& p1, point& p2) {
point p = c;
double t;
p.x += l1.y - l2.y;
p.y += l2.x - l1.x;
p = intersection(p, c, l1, l2);
t = sqrt(r * r - distance(p, c) * distance(p, c)) / distance(l1, l2);
p1.x = p.x + (l2.x - l1.x) * t;
p1.y = p.y + (l2.y - l1.y) * t;
p2.x = p.x - (l2.x - l1.x) * t;
p2.y = p.y - (l2.y - l1.y) * t;
}
double r;
void solve() {
point p, c;
cin >> c.x >> c.y >> r >> p.x >> p.y;
if(distance(c, p) <= r) {cout << "1\n" << p.x << " " << p.y << '\n'; return; }
point p1, p2, o;
intersection_line_circle(c, r, c, p, p1, p2);
if(distance(p1, p) < distance(p2, p)) o = p1;
else o = p2;
point t = {-1 * (p.y - c.y) / distance(c, p), (p.x - c.x) / distance(c, p)};
double minn = 4e9;
point ans;
for(int i = -1e5; i <= 1e5; i++) {
point to = t;
to.x *= i, to.y *= i;
to.x += o.x, to.y += o.y;
for(int u = -1; u <= 1; u++) {
for(int v = -1; v <= 1; v++) {
double xx = (ll)to.x + u;
double yy = (ll)to.y + v;
if(distance(c, {xx, yy}) <= r && minn > distance({xx, yy}, p)) {
minn = distance({xx, yy}, p);
ans = {xx, yy};
}
}
}
}
cout << "1\n" << p.x << " " << p.y << " " << ans.x << ' ' << ans.y << '\n';
}
signed main(){
io;
int T = 1;
cin >> T;
while(T--) {
solve();
}
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 0
Wrong Answer
time: 7ms
memory: 3740kb
input:
3 1 2 1 1 2 3 2 5 -10 3 0 0 1 10 0
output:
1 1 2 1 -10 3 -2 2 1 10 0 1 0
result:
wrong answer the destination point isn't inside the circle. (test case 1)