QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#115293#6328. Many Productsxaphoenix#WA 427ms72764kbC++1425.5kb2023-06-25 15:51:432023-06-25 15:51:46

Judging History

你现在查看的是最新测评结果

  • [2023-08-10 23:21:45]
  • System Update: QOJ starts to keep a history of the judgings of all the submissions.
  • [2023-06-25 15:51:46]
  • 评测
  • 测评结果:WA
  • 用时:427ms
  • 内存:72764kb
  • [2023-06-25 15:51:43]
  • 提交

answer

#include<bits/stdc++.h>

using namespace std;

#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define pf push_front
#define LC k<<1
#define RC k<<1|1
#define IO cin.sync_with_stdio(false); cin.tie(0); cout.tie(0);
#define all(x) (x).begin(), (x).end()
#define SZ(x) ((int)(x).size())
#define rep(i,a,n) for (int i = a; i < n; i++)
#define repn(i,a,n) for (int i = a; i <= n; i++)
#define per(i,a,n) for (int i = (n) - 1; i >= a; i--)
#define pern(i,a,n) for (int i = n; i >= a; i--)

typedef long long LL;
typedef long double LD;
typedef unsigned long long ull;
typedef pair<int, int> PII;
typedef pair<int, LL> PIL;
typedef pair<LL, int> PLI;
typedef pair<double, double> PDD;
typedef pair<ull, ull> PUU;
typedef pair<LL, LL> PLL;

const int N = 410000;
const int M = 1100000;
const int mod = 998244353;
const int inf = (int)1e9;
const LL INF = 1e18;
const double eps = 1e-9;

mt19937_64 Rand((unsigned long long)new char);
#define rand Rand

#define NTT
#define MOD
#define polyn Poly::poly<int>
namespace Poly {
	/*
	step 0. select proper BASE & mod (#define MOD)
	step 1. select proper fft (#define FFT/NTT/FWT/MTT)
	step 2. select proper atomic operator (w/o mod, automatically)
	step 3. select proper multiplication (FFT/NTT/MTT,cyclic FTT)
	*/
	
	// common definition & function
	const int BASE = 20;
	const int MAXN = 1 << BASE;
	const int BRUTEL = 128;

#ifdef MTT
	const int mod = 1000000007;
#else
	const int mod = 998244353;
#endif

	int pow_mod(int a, LL e) {
		int res = 1;
		for (; e; a = (LL)a * a % mod, e >>= 1) if (e & 1) res = (LL)res * a % mod;
		return res;
	}
	int pow_mod(int a, LL e, int mod) {
		int res = 1;
		for (; e; a = (LL)a * a % mod, e >>= 1) if (e & 1) res = (LL)res * a % mod;
		return res;
	}
	int modsqr(int a, int n) {
	    int b, k, i, x;
	    if (n == 2) return a % n;
	    if (pow_mod(a, (n - 1) / 2, n) == 1) {
	    	if (n % 4 == 3)  x = pow_mod(a, (n + 1) / 4, n);
          	else {
            	for (b = 1; pow_mod(b, (n - 1) / 2, n) == 1; b++);
            	i = (n - 1) / 2;
              	k = 0;
              	do {
                	i /= 2;
                  	k /= 2;
                  	if ((pow_mod(a, i, n) * (LL)pow_mod(b, k, n) + 1) % n == 0)  k += (n - 1) / 2;
              	} while (i % 2 == 0);
              	x = (pow_mod(a, (i + 1) / 2, n) * (LL)pow_mod(b, k / 2,n )) % n;
          	}
        	if (x * 2 > n) x = n - x;
         	return x;
	    }
	    return -1;
	}
	
	// select proper fft
#if defined(FFT) || defined(MTT)
	const double PI = acos(-1.0);
	struct complex {
	    double r, i;
	    complex(double _r = 0.0, double _i = 0.0) {r = _r; i =_i;}
	    complex operator + (const complex &b){return complex(r + b.r, i + b.i);}
	    complex operator - (const complex &b){return complex(r - b.r, i - b.i);}
	    complex operator * (const complex &b){return complex(r * b.r - i * b.i, r * b.i + i * b.r);}
	    complex conj() {return complex(r, -i);}
	};
	complex W[2][MAXN*2];
	void init() {
		for (int h = 2; h <= MAXN; h <<= 1)
			for (int d = 0; d < h / 2; d++) {
				W[0][h + d] = complex(cos(2 * d * PI / h), sin(2 * d * PI / h));
				W[1][h + d] = complex(cos(-2 * d * PI / h), sin(-2 * d * PI / h));
			}
	}
	void change(complex y[], int len) {
	    int i, j, k;
	    for(i = 1, j = len / 2; i < len - 1; i++) {
	        if (i < j) swap(y[i], y[j]);
	        k = len / 2;
	        while (j >= k) {
	            j -= k;
	            k /= 2;
	        }
	        if (j < k) j += k;
	    }
	}
	void fft(complex y[],int len,int type)
	{
	    change(y,len);
	    for(int h=2;h<=len;h<<=1)
	        for(int j=0;j<len;j+=h)
	            for(int k=j,d=0;k<j+h/2;k++,d++)
	            {
					complex w;
					if (type==1) w=W[0][h+d];
					else w=W[1][h+d];
	                complex u=y[k],t=w*y[k+h/2];
	                y[k]=u+t;
	                y[k+h/2]=u-t;               
	            }
	    if(type==-1) for(int i=0;i<len;i++) y[i].r/=len;
	}
#endif

#ifdef NTT
	const int g=3;
	int W[2][MAXN*2];
	void init()
	{
		for (int h=2;h<=MAXN;h<<=1)
		{
			LL x=pow_mod(g,(mod-1)/h);
			LL y=pow_mod(x,mod-2);
			W[0][h]=W[1][h]=1;
			for (int d=1;d<h/2;d++)
				W[0][h+d]=(LL)x*W[0][h+d-1]%mod,W[1][h+d]=(LL)y*W[1][h+d-1]%mod;
		}
	}
	void change(int y[],int len)
	{
	    int i,j,k;
	    for(i=1,j=len/2;i<len-1;i++)
	    {
	        if (i<j) swap(y[i],y[j]);
	        k=len/2;
	        while(j>=k)
	        {
	            j-=k;
	            k/=2;
	        }
	        if(j<k) j+=k;
	    }
	}
	void fft(int y[],int len,int type)
	{
	    change(y,len);
	    for(int h=2;h<=len;h<<=1)
	        for(int j=0;j<len;j+=h)
	            for(int k=j,d=0;k<j+h/2;k++,d++)
	            {
					int w;
					if (type==1) w=W[0][h+d];
					else w=W[1][h+d];
	                int u=y[k],t=(LL)w*y[k+h/2]%mod;
	                y[k]=(u+t)%mod;
	                y[k+h/2]=(u-t+mod)%mod;               
	            }
	    if(type==-1) for(int i=0,x=pow_mod(len,mod-2);i<len;i++) y[i]=(LL)y[i]*x%mod;
	}
#endif

#ifdef FWT
	int set_size[MAXN];
	void init()
	{
		for (int i=0;i<MAXN;i++)
			set_size[i]=__builtin_popcount(i);
	}
	void fwt_xor(int *a, int length, int type) {
		int len=-1;
		for (int x = length; x; ++len, x >>= 1);
		repn(i, 1, len) for (int j = 0; j < length; j += 1 << i)
			for (int k = j, szk = 1 << i - 1; k < j + szk; ++k) {
				int s = a[k], t = a[k + szk];
				a[k] = s + t >= mod ? s + t - mod : s + t;
				a[k + szk] = s - t < 0 ? s - t + mod : s - t;
			}
		if (type == 1) return;
		int inv = pow_mod(length, mod - 2);
		rep(i, 0, length) a[i] = 1LL * a[i] * inv % mod;
	}
	
	void fwt_and(int *a,int length,int type)
	{
		int len=-1;
		for (int x=length;x;++len,x>>=1);
		for (int i=1;i<=len;++i)
			for (int j=0;j<length;j+=1<<i)
				for (int k=j,szk=1<<i-1;k<j+szk;++k)
					a[k]=(a[k]+1LL*type*a[k+szk]+mod)%mod;
	}
	
	void fwt_or(int *a,int length,int type)
	{
		int len=-1;
		for (int x=length;x;++len,x>>=1);
		for (int i=1;i<=len;++i)
			for (int j=0;j<length;j+=1<<i)
				for (int k=j,szk=1<<i-1;k<j+szk;++k)
					a[k+szk]=(a[k+szk]+1LL*type*a[k]+mod)%mod;
	}
#endif

	template<class T>
	struct poly
	{
		T *a;
		int length,size;
		void clear()
		{
			delete [] a;
			a=nullptr;
			size=length=0;
		}
		void apply(int size)
		{
			if (!size) return;
			a=new T [size]();
			this->size=size;
		}
		void resize(int size)
		{
			if (!size) return;
			T *aux=a;
			a=new T [size]();
			memcpy(a,aux,sizeof(T)*(length+1));
			if (this->size) delete [] aux;
			this->size=size;
		}
		void initpoly(const poly &p,int length)
		{
			clear();
			apply(length+1);
			memcpy(a,p.a,sizeof(T)*(std::min(length,p.length)+1));
			this->length=length;
		}
		void print()
		{
			for (int i=0;i<=length;i++)
			{
				printf("%d",a[i]);
				if (i!=length) printf(" ");
				else printf("\n");
			}
		}
		void setlength(int length)
		{
			if (length>=size) resize(length+1);
			if (length>=this->length) { this->length=length; return;}
			memset(a+length+1,0,sizeof(T)*(this->length - length));
			this->length=length;
		}
		void reverse()
		{
			std::reverse(a,a+length+1);
		}
		poly():a(nullptr),length(-1),size(0) {}
		poly(int length):a(nullptr),length(length) {apply(length+1);}
		poly(const poly&p):a(nullptr) {initpoly(p,p.length);}
		poly(const poly&p,int length):a(nullptr) {initpoly(p,length);}
		poly(T p[],int n) {
			apply(n+2<<1);
			length=n;
			memcpy(a,p,sizeof(T)*(n+1));
		}
		~poly() {clear();}
		
		// select proper atomic function below
#ifndef MOD
		inline T add(const T &a,const T &b) const {return a+b;}
		inline T sub(const T &a,const T &b) const {return a-b;}
		inline T mul(const T &a,const T &b) const {return a*b;}
		inline T mod_inv(const T &a) const { return 1.0/a;}
#else
		inline T add(const T &a,const T &b) const {return (a+b)%mod;}
		inline T sub(const T &a,const T &b) const {return (a-b+mod)%mod;}
		inline T mul(const T &a,const T &b) const {return (LL)a*b%mod;}
		inline T mod_inv(const T &a) const {return pow_mod(a,mod-2);}
#endif
		T value(T x)
		{
			T res=0,now=1;
			for (int i=0;i<=length;i++)
			{
				res=add(res,mul(a[i],now));
				now=mul(now,x);
			}
			return res;
		}
		T &operator [](int pos) {return a[pos];}
		poly &operator = (const poly &p)
		{
			if (&p!=this) initpoly(p,p.length);
			return *this;
		}
		
		poly operator << (const int &dis) const {
			poly res(length+dis);
			memcpy(res.a+dis,a,sizeof(T)*(length+1));
			return res;
		}
		poly operator >> (const int &dis) const {
			if (dis>length) return poly(-1);
			poly res(length-dis);
			memcpy(res.a,a+dis,sizeof(T)*(res.length+1));
			return res;
		}
		poly operator + (const poly &p) const {
			if (length==-1) return p;
			if (p.length==-1) return *this;
			poly res(*this,std::max(length,p.length));
			for (int i=0;i<=p.length;i++)
				res.a[i]=add(res.a[i],p.a[i]);
			return res;
		}
		poly operator - (const poly &p) const {
			if (length==-1) return p;
			if (p.length==-1) return *this;
			poly res(*this,std::max(length,p.length));
			for (int i=0;i<=p.length;i++)
				res.a[i]=sub(res.a[i],p.a[i]);
			return res;
		}
		poly operator - () const {
			poly res(length);
			for (int i=0;i<=length;i++)
				res[i]=sub(0,a[i]);
			return res;
		}
		poly operator * (const T &p) const {
			poly res(length);
			for (int i=0;i<=length;i++)
				res[i]=mul(a[i],p);
			return res;
		}
		poly operator + (const T &p) const {
			poly res(length);
			for (int i=0;i<=length;i++)
				res[i]=add(a[i],p);
			return res;
		}
		poly operator - (const T &p) const {
			poly res(length);
			for (int i=0;i<=length;i++)
				res[i]=sub(a[i],p);
			return res;
		}
		// brute force for small poly
		void mul(T *a,T *b,T *c,int lengtha,int lengthb,int lengthret,int n) const {
			for (int i=0;i<=n;i++)
				c[i]=0;
			for (int i=0;i<=lengtha;i++)
				for (int j=0;j<=std::min(lengthb,n-i);j++)
					c[i+j]=add(c[i+j],mul(a[i],b[j]));
		}

		// select proper multiplication
#ifdef FFT
		void conv(T *a,T *b,T *c,int lengtha,int lengthb,int lengthret,int n) const
		{
			if (n<BRUTEL)
			{
				mul(a,b,c,lengtha,lengthb,lengthret,n);
				return;
			}
			complex *a1=new complex [lengthret];
			complex *a2=new complex [lengthret];
			for (int i=0;i<lengthret;i++)
			{
				a1[i]=i>lengtha?0:a[i];
				a2[i]=i>lengthb?0:b[i];
			}
			fft(a1,lengthret,1);
			fft(a2,lengthret,1);
			for (int i=0;i<lengthret;i++)
				a1[i]=a1[i]*a2[i];
			fft(a1,lengthret,-1);
			for (int i=0;i<=n;i++)
				c[i]=(a1[i].r+0.5);
			delete [] a1;
			delete [] a2;
		}
		poly operator * (const poly &p) const {
			if (length==-1||p.length==-1) return poly(-1);
			int n=length+p.length;
			int lengthret=1;
			for (;lengthret<=n;lengthret<<=1);
			poly res(n);
			conv(a,p.a,res.a,length,p.length,lengthret,n);
			return res;
		}
#endif

#ifdef MTT
		void merge_fft(complex *a,complex *b,int lengthret,int type) const
		{
			for (int i=0;i<lengthret;i++)
				a[i]=a[i]+complex(0,1.0)*b[i];
			fft(a,lengthret,type);
			b[0]=a[0].conj();
			for (int i=1;i<lengthret;i++)
				b[i]=a[lengthret-i].conj();
			for (int i=0;i<lengthret;i++)
			{
				complex cur_c=a[i],cur_d=b[i];
				a[i]=(cur_c+cur_d)*complex(0.5,0);
				b[i]=(cur_c-cur_d)*complex(0,-0.5);
			}
		}
		void conv(T *a,T *b,T *c,int lengtha,int lengthb,int lengthret,int n) const
		{
			if (n<BRUTEL)
			{
				mul(a,b,c,lengtha,lengthb,lengthret,n);
				return;
			}
			complex *ka=new complex [lengthret];
			complex *kb=new complex [lengthret];
			complex *ra=new complex [lengthret];
			complex *rb=new complex [lengthret];
			const int s=1<<15;
			for (int i=0;i<lengthret;i++)
			{
				ka[i]=i>lengtha?0:a[i]/s;
				ra[i]=i>lengtha?0:a[i]%s;
				kb[i]=i>lengthb?0:b[i]/s;
				rb[i]=i>lengthb?0:b[i]%s;
			}
			merge_fft(ka,ra,lengthret,1);
			merge_fft(kb,rb,lengthret,1);
			// ka -> t1, kb -> t2, ra -> t3  for save memory;
			for (int i=0;i<lengthret;i++)
			{
				complex cur_ka=ka[i],cur_kb=kb[i];
				complex cur_ra=ra[i],cur_rb=rb[i];
				ka[i]=cur_ka*cur_kb;
				kb[i]=cur_ka*cur_rb+cur_ra*cur_kb;
				ra[i]=cur_ra*cur_rb;
			}
			fft(ka,lengthret,-1);
			fft(kb,lengthret,-1);
			fft(ra,lengthret,-1);
			for (int i=0;i<=n;i++)
				c[i]=((LL)(ka[i].r+0.5)%mod*(LL)s*s+(LL)(kb[i].r+0.5)%mod*(LL)s+(LL)(ra[i].r+0.5))%mod;
			delete [] ka;
			delete [] ra;
			delete [] kb;
			delete [] rb;
		}
		poly operator * (const poly &p) const {
			if (length==-1||p.length==-1) return poly(-1);
			int n=length+p.length;
			int lengthret=1;
			for (;lengthret<=n;lengthret<<=1);
			poly res(n);
			conv(a,p.a,res.a,length,p.length,lengthret,n);
			return res;
		}
#endif

#ifdef NTT
		void conv(T *a,T *b,T *c,int lengtha,int lengthb,int lengthret,int n) const
		{
			if (n<BRUTEL)
			{
				mul(a,b,c,lengtha,lengthb,lengthret,n);
				return;
			}
			int *a1=new int [lengthret];
			int *a2=new int [lengthret];
			for (int i=0;i<lengthret;i++)
			{
				a1[i]=i>lengtha?0:a[i];
				a2[i]=i>lengthb?0:b[i];
			}
			fft(a1,lengthret,1);
			fft(a2,lengthret,1);
			for (int i=0;i<lengthret;i++)
				a1[i]=(LL)a1[i]*a2[i]%mod;
			fft(a1,lengthret,-1);
			for (int i=0;i<=n;i++)
				c[i]=a1[i];
			delete [] a1;
			delete [] a2;
		}
		poly operator * (const poly &p) const {
			if (length==-1||p.length==-1) return poly(-1);
			int n=length+p.length;
			int lengthret=1;
			for (;lengthret<=n;lengthret<<=1);
			poly res(n);
			conv(a,p.a,res.a,length,p.length,lengthret,n);
			return res;
		}
#endif

#if defined(NTT) || defined(MTT)
	
		// c^0, c^1, ..., c^m
		poly czt(T c,int m)
		{
			int n=m+length;
			int lengthret=1;
			for (;lengthret<=n;lengthret<<=1);
			T *a1 = new T [lengthret];
			T *a2 = new T [lengthret];
			T *a3 = new T [lengthret];
			T *w[3];
			w[0] = new T [lengthret];
			w[1] = new T [lengthret];
			w[2] = new T [lengthret];
			w[0][0]=1,w[0][1]=c,w[1][0]=w[1][1]=w[2][0]=w[2][1]=1;
			for (int i=2;i<lengthret;i++)
			{
				w[0][i]=mul(w[0][i-1],c);
				w[1][i]=mul(w[0][i-1],w[1][i-1]);
				w[2][i]=mod_inv(w[1][i]);
			}
			for (int i=0;i<lengthret;i++)
			{
				a1[i]=w[1][i];
				a2[i]=i>length?0:mul(w[2][i],a[i]);
			}
			delete [] w[0];
			delete [] w[1];
			reverse(a1,a1+lengthret);
			poly res(m);
			conv(a1,a2,a3,lengthret-1,lengthret-1,lengthret,lengthret-1);
			for (int i=0;i<=m;i++)
				res[i]=mul(a3[lengthret-1-i],w[2][i]);
			delete [] a1;
			delete [] a2;
			delete [] a3;
			delete [] w[2];
			return res;
		}
#endif

#ifdef FWT
		poly operator ^ (const poly &p) const {
			int n=std::max(length,p.length);
			int lengthret=1;
			for (;lengthret<=n;lengthret<<=1);
			int *a1=new int [lengthret];
			int *a2=new int [lengthret];
			for (int i=0;i<lengthret;i++)
			{
				a1[i]=i>length?0:a[i];
				a2[i]=i>p.length?0:p.a[i];
			}
			fwt_xor(a1,lengthret,1);
			fwt_xor(a2,lengthret,1);
			for (int i=0;i<lengthret;i++)
				a1[i]=(LL)a1[i]*a2[i]%mod;
			fwt_xor(a1,lengthret,-1);
			poly res(n);
			for (int i=0;i<=n;i++)
				res[i]=a1[i];
			delete [] a1;
			delete [] a2;
			return res;
		}
		poly operator | (const poly &p) const {
			int n=std::max(length,p.length);
			int lengthret=1;
			for (;lengthret<=n;lengthret<<=1);
			int *a1=new int [lengthret];
			int *a2=new int [lengthret];
			for (int i=0;i<lengthret;i++)
			{
				a1[i]=i>length?0:a[i];
				a2[i]=i>p.length?0:p.a[i];
			}
			fwt_or(a1,lengthret,1);
			fwt_or(a2,lengthret,1);
			for (int i=0;i<lengthret;i++)
				a1[i]=(LL)a1[i]*a2[i]%mod;
			fwt_or(a1,lengthret,-1);
			poly res(n);
			for (int i=0;i<=n;i++)
				res[i]=a1[i];
			delete [] a1;
			delete [] a2;
			return res;
		}
		poly operator & (const poly &p) const {
			int n=std::max(length,p.length);
			int lengthret=1;
			for (;lengthret<=n;lengthret<<=1);
			int *a1=new int [lengthret];
			int *a2=new int [lengthret];
			for (int i=0;i<lengthret;i++)
			{
				a1[i]=i>length?0:a[i];
				a2[i]=i>p.length?0:p.a[i];
			}
			fwt_and(a1,lengthret,1);
			fwt_and(a2,lengthret,1);
			for (int i=0;i<lengthret;i++)
				a1[i]=(LL)a1[i]*a2[i]%mod;
			fwt_and(a1,lengthret,-1);
			poly res(n);
			for (int i=0;i<=n;i++)
				res[i]=a1[i];
			delete [] a1;
			delete [] a2;
			return res;
		}
		poly operator * (const poly &p) const {
			int n=std::max(length,p.length);
			int lengthret=1;
			for (;lengthret<=n;lengthret<<=1);
			int *a1[BASE],*a2[BASE],*a3[BASE];
			for (int i=0;i<BASE;i++)
			{
				a1[i]=new int [lengthret];
				a2[i]=new int [lengthret];
				a3[i]=new int [lengthret];
				for (int j=0;j<lengthret;j++)
				{
					a1[i][j]=(j>length||set_size[j]!=i)?0:a[j];
					a2[i][j]=(j>p.length||set_size[j]!=i)?0:p.a[j];
					a3[i][j]=0;
				}
				fwt_or(a1[i],lengthret,1);
				fwt_or(a2[i],lengthret,1);
			}
			for (int i=0;i<BASE;i++)
				for (int j=0;j<BASE-i;j++)
					for (int k=0;k<lengthret;k++)
						a3[i+j][k]=(a3[i+j][k]+(LL)a1[i][k]*a2[j][k])%mod;
			for (int i=0;i<BASE;i++)
				fwt_or(a3[i],lengthret,-1);
			poly res(n);
			for (int i=0;i<=n;i++)
				res[i]=a3[set_size[i]][i];
			for (int i=0;i<BASE;i++)
			{
				delete [] a1[i];
				delete [] a2[i];
				delete [] a3[i];
			}
			return res;
		}
#endif
		friend poly operator - (const T &q,const poly &p) {return p-q;} 
		friend poly operator + (const T &q,const poly &p) {return p+q;}
		friend poly operator * (const T &q,const poly &p) {return p*q;}
		poly &operator += (const poly &p){*this=*this+p; return *this;}
		poly &operator -= (const poly &p){*this=*this-p; return *this;}
		poly &operator *= (const poly &p){*this=*this*p; return *this;}
		poly &operator *= (const T &p){*this=*this*p; return *this;}
		poly der() const
		{
			if (length==-1) return poly(-1);
			poly res(length-1);
			for (int i=0;i<length;i++)
				res[i]=mul(a[i+1],i+1);
			return res;
		}
		poly integral() const
		{
			int *a1 = new int [length+3];
			a1[0]=0,a1[1]=1;
			for (int i=2;i<=length+1;i++)
				a1[i]=sub(0,mul(mod/i,a1[mod%i]));
			poly res(length+1);
			for (int i=length+1;i;i--)
				res[i]=mul(a[i-1],a1[i]);
			delete [] a1;
			return res;
		}
		poly inv(int n) const
		{
			poly res(1);
			res[0]=pow_mod(a[0],mod-2);
			int len=1;
			while (len<n) len*=2;
			for (int degree=0;degree<len;)
			{
				degree=degree<<1|1;
				poly a1(*this,degree),a2(res);
				res*=res,res.setlength(degree);
				a1*=res,a1.setlength(degree);
				res=2*a2-a1;
			}
			res.setlength(n-1);
			return res;
		}
		poly operator / (const poly &p) const
		{
			if (p.length>length) return poly(-1);
			poly a(*this),b(p);
			a.reverse(),a.setlength(length-p.length+1);
			b.reverse(),b.setlength(length-p.length+1);
			poly res(b.inv(length-p.length+1));
			res*=a;
			res.setlength(length-p.length);
			res.reverse();
			return res;
		}
		poly operator % (const poly &p) const
		{
			poly res=(*this)-(*this)/p*p;
			res.setlength(p.length-1);
			return res;
		}
		poly &operator /= (const poly &p) {*this=*this/p; return *this;}
		poly &operator %= (const poly &p) {*this=*this%p; return *this;}
		// a[0]=1 must
		poly ln(int n) const
		{
			poly res=(*this).der()*(*this).inv(n);
			res.setlength(n);
			res=res.integral();
			res.setlength(n-1);
			return res;
		}
		poly sqrt(int n) const 
		{
			poly res(1);
			res[0]=modsqr(a[0],mod);
			for (int degree=0;degree<n;)
			{
				degree=degree<<1|1;
				poly a1(*this,degree),a2(res);
				res=res*res+a1,res.setlength(degree);
				a2=(a2*2).inv(degree+1);
				res=res*a2;
				res.setlength(degree);
			}
			res.setlength(n-1);
			return res;
		}
		// a[0]=0;
		poly exp(int n) const 
		{
			poly res(1);
			res[0]=1;
			poly unit(res);
			for (int degree=0;degree<n;)
			{
				degree=degree<<1|1;
				poly a1(*this,degree),a2(res);
				a1=unit-a2.ln(degree+1)+a1;
				a1.setlength(degree);
				res=a1*a2;
				res.setlength(degree);
			}
			res.setlength(n-1);
			return res;
		}
		// k1 = K % mod, k2 = K % mod-1, k3 = min(n, K)
		poly pow(int n,T k1,T k2=-1, T k3=-1) const
		{
			if (k2==-1) k2=k1;
			if (k3==-1) k3=k1;
			int pos=-1;
			for (int i=0;i<=length;i++)
				if (a[i]!=0)
				{
					pos=i;
					break;
				}
			// sqrt(0)
			if (pos==-1) return (*this);
			poly res=(*this)>>pos;
			T coef=res[0],inverse=mod_inv(res[0]);
			res=res*inverse;
			res=res.ln(n);
			res=res*k1;
			res=res.exp(n);
			pos=min((LL)pos*(LL)k3,(LL)n);
			res=(res*pow_mod(coef,k2))<<pos;
			res.setlength(n-1);
			return res;
		}
		poly sin(int n) const
		{
			static T i=modsqr(mod-1,mod);
			poly a1=((*this)*i).exp(n);
			poly a2=((*this)*sub(0,i)).exp(n);
			poly res=a1-a2;
			res=res*mod_inv(mul(2,i));
			return res;
		}
		poly cos(int n) const
		{
			static T i=modsqr(mod-1,mod);
			poly a1=((*this)*i).exp(n);
			poly a2=((*this)*sub(0,i)).exp(n);
			poly res=a1+a2;
			res=res*mod_inv(2);
			return res;
		}
		// a[0]=0
		poly arcsin(int n) const
		{
			poly res(1);
			res[0]=1;
			poly unit(res);
			poly a1=(*this).der();
			poly a2=(*this)*(*this);
			a2.setlength(n-1);
			a2=unit-a2;
			a2=a2.sqrt(n);
			a1=a1*a2.inv(n);
			a1.setlength(n-1);
			res=a1.integral();
			res.setlength(n-1);
			return res;
		}
		// a[0]=0
		poly arccos(int n) const
		{
			poly res(1);
			res[0]=1;
			poly unit(res);
			poly a1=(*this).der();
			poly a2=(*this)*(*this);
			a2.setlength(n-1);
			a2=unit-a2;
			a2=a2.sqrt(n);
			a1=-a1*a2.inv(n);
			a1.setlength(n-1);
			res=a1.integral();
			res.setlength(n-1);
			return res;
		}	
		// a[0]=0
		poly arctan(int n) const
		{
			poly res(1);
			res[0]=1;
			poly unit(res);
			poly a1=(*this).der();
			poly a2=(*this)*(*this);
			a2.setlength(n-1);
			a2=unit+a2;
			a1=a1*a2.inv(n);
			a1.setlength(n-1);
			res=a1.integral();
			res.setlength(n-1);
			return res;
		}
		void multi_eval(T b[],int m)
		{
			int M=4*m;
			poly *moder = new poly [M];
			poly *rem = new poly [M];
			int *l = new int [M];
			int *r = new int [M];
			memset(l,0,sizeof(int)*(M));
			memset(r,0,sizeof(int)*(M));
			l[1]=1,r[1]=m;
			for (int i=1;i<M;i++)
			{
				if (l[i]==r[i]) continue;
				int mid=(l[i]+r[i])/2;
				l[i<<1]=l[i],r[i<<1]=mid;
				l[i<<1|1]=mid+1,r[i<<1|1]=r[i];
			}
			for (int i=M-1;i;i--)
			{
				if (l[i]==r[i])
				{
					if (l[i])
					{
						moder[i]=poly(1),moder[i][0]=sub(0,b[l[i]]),moder[i][1]=1;
					}
					continue;
				}
				moder[i]=moder[i<<1]*moder[i<<1|1];
				moder[i].setlength(r[i]-l[i]+1);
			}
			rem[1]=(*this)%moder[1];
			for (int i=1;i<M;i++)
			{
				if (l[i]==r[i]) continue;
				rem[i<<1]=rem[i]%moder[i<<1];
				rem[i<<1|1]=rem[i]%moder[i<<1|1];
			}
			for (int i=1;i<M;i++)
				if (l[i]&&l[i]==r[i]) b[l[i]]=rem[i][0];
			delete [] l;
			delete [] r;
			delete [] rem;
			delete [] moder;
			
		}
		void fast_lagrange(T x[],T y[],int m)
		{
			int M=4*m;
			poly *moder = new poly [M];
			poly *res = new poly [M];
			int *l = new int [M];
			int *r = new int [M];
			T *val = new T [M];
			memset(l,0,sizeof(int)*(M));
			memset(r,0,sizeof(int)*(M));
			l[1]=1,r[1]=m;
			for (int i=1;i<M;i++)
			{
				if (l[i]==r[i]) continue;
				int mid=(l[i]+r[i])/2;
				l[i<<1]=l[i],r[i<<1]=mid;
				l[i<<1|1]=mid+1,r[i<<1|1]=r[i];
			}
			for (int i=M-1;i;i--)
			{
				if (l[i]==r[i])
				{
					if (l[i])
					{
						moder[i]=poly(1),moder[i][0]=sub(0,x[l[i]]),moder[i][1]=1;
					}
					continue;
				}
				moder[i]=moder[i<<1]*moder[i<<1|1];
				moder[i].setlength(r[i]-l[i]+1);
			}
			for (int i=1;i<=m;i++)
				val[i]=x[i];
			poly g=moder[1].der();
			g.multi_eval(val,m);
			for (int i=M-1;i;i--)
			{
				if (l[i]==r[i])
				{
					if (l[i])
					{
						res[i]=poly(0),res[i][0]=mul(y[l[i]],mod_inv(val[l[i]]));
					}
					continue;
				}
				res[i]=res[i<<1]*moder[i<<1|1]+res[i<<1|1]*moder[i<<1];
				res[i].setlength(r[i]-l[i]);
			}
			(*this)=res[1];
			delete [] l;
			delete [] r;
			delete [] moder;
			delete [] res;
		}
	};
}
polyn h[N], g[N];
int n, a[N], num;
LL m;
int cnt;
LL b[N], c[N], ans;
LL pw[N][62], f[N], inv[N], ff[N];
LL C(int n, int m) {
	LL res = (f[n] * inv[m]) % mod;
	res = (res * inv[n - m]) % mod;
	return res;
}
LL res;

int main() {
	Poly::init();
	IO;
	f[0] = 1;
	rep(i, 1, N) f[i] = (f[i - 1] * i) % mod;
	ff[1] = ff[0] = inv[1] = inv[0] = 1;  
	rep(i, 2, N) {
    	inv[i] = (LL)(mod - mod / i) * inv[mod % i] % mod;
    	ff[i] = inv[i];
	}
	rep(i, 2, N) inv[i] = (inv[i - 1] * inv[i]) % mod;
	cin >> n >> m;
	repn(i, 1, n) cin >> a[i], h[i].setlength(1), h[i][0] = 1, h[i][1] = a[i];
	num = n;
	while (num > 1) {
		int nnum = 0;
		for (int i = 1; i <= num; i += 2) {
			if (i + 1 <= num) g[++nnum] = h[i] * h[i + 1];
			else g[++nnum] = h[i];
		}
		num = nnum;
		repn(i, 1, num) h[i] = g[i];
	}
	for (LL i = 2; i * i <= m; i++) {
		if (m % i == 0) {
			b[++cnt] = i;
			while (m % i == 0) c[cnt]++, m /= i;
		}
	}
	if (m > 1) b[++cnt] = m, c[cnt] = 1;
	repn(i, 1, cnt) {
		pw[i][0] = 1;
		repn(j, 1, c[i]) {
			pw[i][j] = pw[i][j - 1] * b[i];
		}
	}
	repn(i, 0, n) {
		LL res = h[1][i];
		repn(j, 1, cnt) {
			LL cur = 0;
			repn(k, 0, c[cnt]) {
				if (i == 0 && k != c[cnt]) continue;
				if (i == n && k != 0) continue;
				LL tmp = pw[j][k] % mod;
				if (i < n) tmp = tmp * C(k + (n - i) - 1, (n - i) - 1) % mod;
				if (i > 0) tmp = tmp * C(c[cnt] - k + i - 1, i - 1) % mod;
				cur = (cur + tmp) % mod;
			}
			res = res * cur % mod;
		}
		ans = (ans + res) % mod;
	}
	cout << ans << "\n";
	return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 19ms
memory: 48428kb

input:

2 3
0 1

output:

10

result:

ok 1 number(s): "10"

Test #2:

score: 0
Accepted
time: 10ms
memory: 43892kb

input:

5 1
0 1 2 3 4

output:

120

result:

ok 1 number(s): "120"

Test #3:

score: 0
Accepted
time: 12ms
memory: 46232kb

input:

10 314159265358
0 1 2 3 4 5 6 7 8 9

output:

658270849

result:

ok 1 number(s): "658270849"

Test #4:

score: 0
Accepted
time: 377ms
memory: 71636kb

input:

200000 999999999989
823489320 406308599 710963770 183707427 192930969 941365774 318564299 391028855 945374838 651744270 515755727 220857626 599403217 214957584 335628890 771694833 40989299 34892948 630275822 869708185 432704750 924850167 707864789 232688853 406616372 529994171 782650336 979286144 65...

output:

777405593

result:

ok 1 number(s): "777405593"

Test #5:

score: 0
Accepted
time: 395ms
memory: 72764kb

input:

199999 999999999331
969252353 737776924 108584656 914893031 394348303 484491127 481944452 120707790 396027156 912223841 673218447 285837840 782450963 144940963 892852383 782342131 655814479 1324532 794011279 219428289 470995270 489684781 347978895 102371386 546635675 585575402 940741300 644383693 67...

output:

573300948

result:

ok 1 number(s): "573300948"

Test #6:

score: 0
Accepted
time: 420ms
memory: 70168kb

input:

200000 742073813481
681694404 632869785 595996398 549654767 229574822 571126931 469341419 702184356 904366313 746328903 842820475 578092052 586236587 796973195 766841610 123554290 666934376 118830348 326368534 40766155 790927880 880528134 890721558 357539968 885997091 937508042 5345140 189162897 200...

output:

998002127

result:

ok 1 number(s): "998002127"

Test #7:

score: -100
Wrong Answer
time: 427ms
memory: 69364kb

input:

199999 963761198400
124206358 425059813 396286827 293468808 45861386 890748681 587148852 2565459 137729579 865441288 710978415 682768035 62610967 490442955 426217252 132942846 314800009 680954919 208583546 438814504 79283475 26876485 718279429 714019319 799517726 874565672 262935553 180792133 654326...

output:

460074422

result:

wrong answer 1st numbers differ - expected: '150795568', found: '460074422'