QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#114029#6349. Is This FFT?CrysflyTL 1ms36292kbC++176.6kb2023-06-20 15:54:092023-06-20 15:54:11

Judging History

你现在查看的是最新测评结果

  • [2023-08-10 23:21:45]
  • System Update: QOJ starts to keep a history of the judgings of all the submissions.
  • [2023-06-20 15:54:11]
  • 评测
  • 测评结果:TL
  • 用时:1ms
  • 内存:36292kb
  • [2023-06-20 15:54:09]
  • 提交

answer

// what is matter? never mind.
#include<bits/stdc++.h>
#define For(i,a,b) for(int i=(a);i<=(b);++i)
#define Rep(i,a,b) for(int i=(a);i>=(b);--i)
using namespace std;
inline int read()
{
	char c=getchar();int x=0;bool f=0;
	for(;!isdigit(c);c=getchar())f^=!(c^45);
	for(;isdigit(c);c=getchar())x=(x<<1)+(x<<3)+(c^48);
	if(f)x=-x;return x;
}

int mod;
typedef unsigned long long ull;
namespace FM{
	typedef __uint128_t L;
	struct FastMod{
		ull b,m;
		FastMod(ull b):b(b),m(ull((L(1)<<64)/b)){}
		ull reduce(ull a){ull q=(ull)((L(m)*a)>>64),r=a-q*b;return r>=b?r-b:r;}
	};
	FastMod F(2);
}
void initmod(){mod=read(),FM::F=FM::FastMod(mod);}

struct modint{
	int x;
	modint(int o=0){x=o;}
	modint &operator = (int o){return x=o,*this;}
	modint &operator +=(modint o){return x=x+o.x>=mod?x+o.x-mod:x+o.x,*this;}
	modint &operator -=(modint o){return x=x-o.x<0?x-o.x+mod:x-o.x,*this;}
	modint &operator *=(modint o){return x=FM::F.reduce(1ull*x*o.x),*this;}
	modint &operator ^=(int b){
		modint a=*this,c=1;
		for(;b;b>>=1,a*=a)if(b&1)c*=a;
		return x=c.x,*this;
	}
	modint &operator /=(modint o){return *this *=o^=mod-2;}
	friend modint operator +(modint a,modint b){return a+=b;}
	friend modint operator -(modint a,modint b){return a-=b;}
	friend modint operator *(modint a,modint b){return a*=b;}
	friend modint operator /(modint a,modint b){return a/=b;}
	friend modint operator ^(modint a,int b){return a^=b;}
	friend bool operator ==(modint a,int b){return a.x==b;}
	friend bool operator !=(modint a,int b){return a.x!=b;}
	bool operator ! () {return !x;}
	modint operator - () {return x?mod-x:0;}
	bool operator <(const modint&b)const{return x<b.x;}
};
inline modint qpow(modint x,int y){return x^y;}

vector<modint> fac,ifac,iv;
inline void initC(int n)
{
	if(iv.empty())fac=ifac=iv=vector<modint>(2,1);
	int m=iv.size(); ++n;
	if(m>=n)return;
	iv.resize(n),fac.resize(n),ifac.resize(n);
	For(i,m,n-1){
		iv[i]=iv[mod%i]*(mod-mod/i);
		fac[i]=fac[i-1]*i,ifac[i]=ifac[i-1]*iv[i];
	}
}
inline modint C(int n,int m){
	if(m<0||n<m)return 0;
	return initC(n),fac[n]*ifac[m]*ifac[n-m];
}
inline modint sign(int n){return (n&1)?(mod-1):(1);}

#define fi first
#define se second
#define pb push_back
#define mkp make_pair
typedef pair<int,int>pii;
typedef vector<int>vi;

#define poly vector<modint>
modint G,Ginv;
inline poly one(){poly a;a.push_back(1);return a;}
vector<int>rev;
vector<modint>rts;
inline int ext(int n){
	int k=0;
	while((1<<k)<n)++k;return k; 
}
inline void init(int k){
	int n=1<<k;
	if(rev.size()==n)return;
	rev.resize(n);
	For(i,0,n-1)rev[i]=(rev[i>>1]>>1)|((i&1)<<(k-1));
	if(rts.size()>=n)return;
	int lst=max(1,(int)rts.size()); rts.resize(n);
	for(int mid=lst;mid<n;mid<<=1){
		modint wn=G^((mod-1)/(mid<<1));
		rts[mid]=1;
		For(i,1,mid-1)rts[i+mid]=rts[i+mid-1]*wn;
	}
}
void ntt(poly&a,int k,int typ)
{
	int n=1<<k;
	if(typ<0) reverse(a.begin()+1,a.end());
	For(i,0,n-1)if(i<rev[i])swap(a[i],a[rev[i]]); 
	for(int mid=1;mid<n;mid<<=1)
		for(int r=mid<<1,j=0;j<n;j+=r)
			for(int k=0;k<mid;++k){
				modint x=a[j+k],y=rts[mid+k]*a[j+k+mid];
				a[j+k]=x+y,a[j+k+mid]=x-y;
			}
	if(typ<0){
		modint inv=modint(1)/n;
		For(i,0,n-1)a[i]*=inv;
	}
}
 
poly operator +(poly a,poly b){
	int n=max(a.size(),b.size());a.resize(n),b.resize(n);
	For(i,0,n-1)a[i]+=b[i];return a;
}
poly operator -(poly a,poly b){
	int n=max(a.size(),b.size());a.resize(n),b.resize(n);
	For(i,0,n-1)a[i]-=b[i];return a;
}
poly operator *(poly a,modint b){
	int n=a.size();
	For(i,0,n-1)a[i]*=b;return a;
} 
poly operator *(poly a,poly b)
{
	if((int)a.size()<=64 && (int)b.size()<=64){
		poly c(a.size()+b.size()-1,0);
		for(int i=0;i<a.size();++i)
			for(int j=0;j<b.size();++j)
				c[i+j]+=a[i]*b[j];
		return c; 
	}
	int n=(int)a.size()+(int)b.size()-1,k=ext(n);
	a.resize(1<<k),b.resize(1<<k),init(k);
	ntt(a,k,1),ntt(b,k,1);
	For(i,0,(1<<k)-1)a[i]*=b[i];
	ntt(a,k,-1),a.resize(n);return a;
}

poly Tmp;
poly pmul(poly a,poly b,int n,bool ok=0)
{
	int k=ext(n); init(k);
	a.resize(1<<k),ntt(a,k,1);
	if(!ok) b.resize(1<<k),ntt(b,k,1),Tmp=b;
	For(i,0,(1<<k)-1)a[i]*=Tmp[i];
	ntt(a,k,-1),a.resize(n);
	return a;
}
poly inv(poly a,int n)
{
	a.resize(n);
	if(n==1){
		poly f(1,1/a[0]);
		return f;
	}
	poly f0=inv(a,(n+1)>>1),f=f0;
	poly now=pmul(a,f0,n,0);
	for(int i=0;i<f0.size();++i)now[i]=0;
	now=pmul(now,poly(0),n,1);
	f.resize(n);
	for(int i=f0.size();i<n;++i)f[i]=-now[i];
	return f;
}
poly inv(poly a){
	return inv(a,a.size());
}

poly deriv(poly a){
	int n=(int)a.size()-1;
	For(i,0,n-1)a[i]=a[i+1]*(i+1);
	a.resize(n);return a;
}
poly inter(poly a){
	int n=a.size()+1;a.resize(n);
	Rep(i,n-1,1)a[i]=a[i-1]/i;
	a[0]=0;return a;
}
poly ln(poly a){
	int n=a.size();
	a=inter(deriv(a)*inv(a));
	a.resize(n);return a;
}
poly exp(poly a,int k){
	int n=1<<k;a.resize(n);
	if(n==1)return one();
	poly f0=exp(a,k-1);f0.resize(n);
	return f0*(one()+a-ln(f0)); 
}
poly exp(poly a){
	int n=a.size();
	a=exp(a,ext(n));a.resize(n);return a;
}
poly div(poly a,poly b){
	int n=a.size(),m=b.size(),k=ext(n-m+1);
	reverse(a.begin(),a.end()),reverse(b.begin(),b.end());
	a.resize(n-m+1),b.resize(n-m+1);
	a=a*inv(b),a.resize(n-m+1),reverse(a.begin(),a.end()); return a;
}
poly modulo(poly a,poly b){
	if(b.size()>a.size())return a;
	int n=b.size()-1;
	a=a-div(a,b)*b;a.resize(n);return a;
} 

#define maxn 500005
#define inf 0x3f3f3f3f

namespace qwq{
	int divs[233],cnt;
	int getphi(int n){
		int res=n;
		For(i,2,n/i)
			if(n%i==0){
				res/=i,res*=(i-1);
				while(n%i==0)n/=i;
			}
		if(n>1)res/=n,res*=(n-1);
		return res;
	}
	void getfac(int n){
		For(i,2,n/i)
			if(n%i==0){
				while(n%i==0)
					n/=i,divs[++cnt]=i;
			}
		if(n>1)divs[++cnt]=n;
	}
	bool chk(modint x){
		int res=mod-1;
		For(i,1,cnt)
			if((x^(res/divs[i])).x==1) return 0;
		return 1;
	}
	int GetG(){
		getfac(mod-1);
		For(i,2,mod-1)if(chk(i))return i;
	}
}

void init_mod(){
	initmod();
	G=qwq::GetG(),Ginv=1/G;
}

int n,up[256];
modint f[256][256*256/2];

modint F(int n,int m){
	return C(n+m,m);
}

signed main()
{
	n=read(),init_mod(),initC(n*n+5);
	f[1][0]=1;
	For(i,1,n)up[i]=i*(i-1)/2;
	For(i,2,n){
		// f[j][x] -> f[j][x]*ifac[x]
		For(j,1,i-1){
			int k=i-j;
			For(x,0,up[j])
				For(y,0,up[k])
					f[i][x+y+j*(i-j)-1]+=f[j][x]*f[k][y]*
											fac[up[j]-x+up[k]-y]*fac[x+y+j*(i-j)-1]
											*ifac[up[j]-x]*ifac[up[k]-y]*ifac[x]*ifac[y];
		}
		Rep(j,up[i],1) f[i][j-1]+=f[i][j];
		modint res=f[i][0];
		res*=ifac[up[i]]*fac[i]*((mod+1)/2);
		cout<<res.x<<"\n";
	}
	return 0;
}

詳細信息

Test #1:

score: 100
Accepted
time: 1ms
memory: 36292kb

input:

10 998244353

output:

1
1
532396989
328786831
443364983
567813846
34567523
466373946
474334062

result:

ok 9 numbers

Test #2:

score: -100
Time Limit Exceeded

input:

250 998244353

output:


result: