QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#108064 | #6513. Expression 3 | tricyzhkx | TL | 3112ms | 90488kb | C++14 | 3.1kb | 2023-05-23 15:32:11 | 2023-05-23 15:32:15 |
Judging History
answer
# include <bits/stdc++.h>
using namespace std;
const int mod=998244353,g=3;
typedef long long ll;
typedef unsigned long long ull;
typedef vector<int> Poly;
int ans,a[200010],rev[600010],w[600010],maxn;
ll inv[200010];
char s[200010];
Poly P1[600010],P2[600010],P3[600010];
template<typename T>
void upd(int &a,T b){a=(a+b)%mod;}
ll power(ll a,int b)
{
ll ans=1;
for(;b;b>>=1,a=a*a%mod)
if(b&1) ans=ans*a%mod;
return ans;
}
void init(int len)
{
int l=0;maxn=1;
while(maxn<=len) maxn<<=1,l++;
for(int i=0;i<maxn;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<(l-1));
for(int i=1;i<maxn;i<<=1)
{
ll wm=power(g,(mod-1)/(i<<1));w[i]=1;
for(int j=1;j<i;j++) w[i+j]=w[i+j-1]*wm%mod;
}
}
void NTT(Poly &p,bool flag)
{
static ull a[600010];
p.resize(maxn);
for(int i=0;i<maxn;i++) a[i]=p[rev[i]];
for(int i=1;i<maxn;i<<=1)
for(int j=0;j<maxn;j+=i<<1)
for(int k=j;k<j+i;k++)
{
ull x=a[k],y=a[k+i]*w[i+k-j]%mod;
a[k]=x+y;a[k+i]=x+mod-y;
}
if(flag) for(int i=0;i<maxn;i++) p[i]=a[i]%mod;
else
{
reverse(a+1,a+maxn);
int inv=power(maxn,mod-2);
for(int i=0;i<maxn;i++) p[i]=a[i]%mod*inv%mod;
}
}
Poly operator-(const Poly &a,const Poly &b)
{
int n=a.size(),m=b.size();
Poly ans(max(n,m));
for(int i=0;i<n;i++) ans[i]=a[i];
for(int i=0;i<m;i++) upd(ans[i],mod-b[i]);
return ans;
}
Poly mul(Poly a,Poly b,int sz=-1)
{
int n=a.size(),m=b.size();
if(sz<0) sz=n+m-1;
init(n+m);
NTT(a,1);NTT(b,1);
for(int i=0;i<maxn;i++) a[i]=(ll)a[i]*b[i]%mod;
NTT(a,0);a.resize(sz);
return a;
}
Poly INV(const Poly &a,int n)
{
assert(n<=(int)a.size());
if(n==1) return {(int)power(a[0],mod-2)};
Poly b=INV(a,(n+1)/2),c(a.begin(),a.begin()+n),d=b;
init(n);
NTT(b,1);NTT(c,1);
for(int i=0;i<maxn;i++) c[i]=(ll)b[i]*c[i]%mod;
NTT(c,0);c.resize(n);fill(c.begin(),c.begin()+(n+1)/2,0);
NTT(c,1);
for(int i=0;i<maxn;i++) b[i]=(ll)b[i]*(mod-c[i])%mod;
NTT(b,0);b.resize(n);move(d.begin(),d.end(),b.begin());
return b;
}
Poly MOD(Poly a,Poly b)
{
int n=a.size(),m=b.size();
if(n<m) return a.resize(m-1),a;
Poly ra(a.rbegin(),a.rend()),rb(b.rbegin(),b.rend());
rb.resize(n-m+1);
Poly Q=mul(ra,INV(rb,n-m+1),n-m+1);
reverse(Q.begin(),Q.end());
Poly R=a-mul(b,Q);R.resize(m-1);
return R;
}
void build(int rt,int l,int r)
{
if(l==r)
{
if(s[l]=='-') P1[rt]={mod-l-2,1},P2[rt]={mod-l,1};
else P1[rt]=P2[rt]={1};
P3[rt]={mod-l,1};
return;
}
int mid=(l+r)/2;
build(rt*2,l,mid);build(rt*2+1,mid+1,r);
P1[rt]=mul(P1[rt*2],P1[rt*2+1]);
P2[rt]=mul(P2[rt*2],P2[rt*2+1]);
P3[rt]=mul(P3[rt*2],P3[rt*2+1]);
}
void solve(int rt,int l,int r,Poly F1,Poly F2)
{
if(l==r) return upd(ans,F1[0]*power(F2[0],mod-2)%mod*a[l]);
int mid=(l+r)/2;
solve(rt*2,l,mid,MOD(F1,P3[rt*2]),MOD(F2,P3[rt*2]));
solve(rt*2+1,mid+1,r,MOD(mul(F1,P1[rt*2]),P3[rt*2+1]),MOD(mul(F2,P2[rt*2]),P3[rt*2+1]));
}
int main()
{
int n;
cin>>n;
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
scanf("%s",s+1);
build(1,1,n);solve(1,1,n,{1},{1});
for(int i=1;i<n;i++) ans=(ll)ans*i%mod;
cout<<ans<<endl;
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 11ms
memory: 45648kb
input:
4 9 1 4 1 -+-
output:
46
result:
ok 1 number(s): "46"
Test #2:
score: 0
Accepted
time: 3ms
memory: 45592kb
input:
5 1 2 3 4 5 +-+-
output:
998244313
result:
ok 1 number(s): "998244313"
Test #3:
score: 0
Accepted
time: 3112ms
memory: 90488kb
input:
100000 664815434 205025136 871445392 797947979 379688564 336946672 231295524 401655676 526374414 670533644 156882283 372427821 700299596 166140732 677498490 44858761 185182210 559696133 813911251 842364231 681916958 114039865 222372111 784286397 437994571 152137641 650875922 613727135 209302742 5321...
output:
178167352
result:
ok 1 number(s): "178167352"
Test #4:
score: -100
Time Limit Exceeded
input:
200000 109044620 745578941 396599814 756923982 940933214 875346257 378089839 792684563 491924893 782192923 208569108 421583135 814903710 690275542 15773609 364566266 12890134 661702679 640270667 615999192 13352194 325560419 385152885 265008089 570536451 282429805 331946208 255056541 813809151 150995...