QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#106670 | #6345. Random Interactive Convex Hull Bot | maspy | WA | 3ms | 3416kb | C++23 | 13.3kb | 2023-05-18 18:03:17 | 2023-05-18 18:03:20 |
Judging History
answer
#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) \
vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) \
vector<vector<vector<type>>> name( \
h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name( \
a, vector<vector<vector<type>>>( \
b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) \
for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T, typename U>
T ceil(T x, U y) {
return (x > 0 ? (x + y - 1) / y : x / y);
}
template <typename T, typename U>
T floor(T x, U y) {
return (x > 0 ? x / y : (x - y + 1) / y);
}
template <typename T, typename U>
pair<T, T> divmod(T x, U y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sum = 0;
for (auto &&a: A) sum += a;
return sum;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
assert(!que.empty());
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
assert(!que.empty());
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids),
[&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
#endif
#line 1 "library/other/io2.hpp"
#define INT(...) \
int __VA_ARGS__; \
IN(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
IN(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
IN(__VA_ARGS__)
#define CHR(...) \
char __VA_ARGS__; \
IN(__VA_ARGS__)
#define DBL(...) \
long double __VA_ARGS__; \
IN(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void read(int &a) { cin >> a; }
void read(long long &a) { cin >> a; }
void read(char &a) { cin >> a; }
void read(double &a) { cin >> a; }
void read(long double &a) { cin >> a; }
void read(string &a) { cin >> a; }
template <class T, class S> void read(pair<T, S> &p) { read(p.first), read(p.second); }
template <class T> void read(vector<T> &a) {for(auto &i : a) read(i);}
template <class T> void read(T &a) { cin >> a; }
void IN() {}
template <class Head, class... Tail> void IN(Head &head, Tail &...tail) {
read(head);
IN(tail...);
}
template <typename T, typename U>
ostream& operator<<(ostream& os, const pair<T, U>& A) {
os << A.fi << " " << A.se;
return os;
}
template <typename T>
ostream& operator<<(ostream& os, const vector<T>& A) {
for (size_t i = 0; i < A.size(); i++) {
if(i) os << " ";
os << A[i];
}
return os;
}
void print() {
cout << "\n";
cout.flush();
}
template <class Head, class... Tail>
void print(Head&& head, Tail&&... tail) {
cout << head;
if (sizeof...(Tail)) cout << " ";
print(forward<Tail>(tail)...);
}
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"
#line 1 "library/other/fibonacci_search.hpp"
// [L, R) での極小値をひとつ求める、単峰は不要
template <typename T, bool MINIMIZE, typename F>
pair<ll, T> fibonacci_search(F f, ll L, ll R) {
assert(L < R);
--R;
ll a = L, b = L + 1, c = L + 2, d = L + 3;
int n = 0;
while (d < R) { b = c, c = d, d = b + c - a, ++n; }
auto get = [&](ll x) -> T {
if (R < x) return infty<T>;
return (MINIMIZE ? f(x) : -f(x));
};
T ya = get(a), yb = get(b), yc = get(c), yd = get(d);
// この中で極小ならば全体でも極小、を維持する
FOR(n) {
if (yb <= yc) {
d = c, c = b, b = a + d - c;
yd = yc, yc = yb, yb = get(b);
} else {
a = b, b = c, c = a + d - b;
ya = yb, yb = yc, yc = get(c);
}
}
ll x = a;
T y = ya;
if (chmin(y, yb)) x = b;
if (chmin(y, yc)) x = c;
if (chmin(y, yd)) x = d;
if (MINIMIZE) return {x, y};
return {x, -y};
}
#line 2 "library/random/base.hpp"
u64 RNG_64() {
static uint64_t x_
= uint64_t(chrono::duration_cast<chrono::nanoseconds>(
chrono::high_resolution_clock::now().time_since_epoch())
.count())
* 10150724397891781847ULL;
x_ ^= x_ << 7;
return x_ ^= x_ >> 9;
}
u64 RNG(u64 lim) { return RNG_64() % lim; }
ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
#line 1 "library/geo/convex_hull.hpp"
template <typename T>
vector<int> ConvexHull(vector<pair<T, T>>& XY, string mode = "full",
bool inclusive = false, bool sorted = false) {
assert(mode == "full" || mode == "lower" || mode == "upper");
ll N = XY.size();
if (N == 1) return {0};
if (N == 2) return {0, 1};
vc<int> I = argsort(XY);
auto check = [&](ll i, ll j, ll k) -> bool {
auto xi = XY[i].fi, yi = XY[i].se;
auto xj = XY[j].fi, yj = XY[j].se;
auto xk = XY[k].fi, yk = XY[k].se;
auto dx1 = xj - xi, dy1 = yj - yi;
auto dx2 = xk - xj, dy2 = yk - yj;
ll det = dx1 * dy2 - dy1 * dx2;
return (inclusive ? det >= 0 : det > 0);
};
auto calc = [&]() {
vector<int> P;
for (auto&& k: I) {
while (P.size() > 1) {
auto i = P[P.size() - 2];
auto j = P[P.size() - 1];
if (check(i, j, k)) break;
P.pop_back();
}
P.eb(k);
}
return P;
};
vc<int> P;
if (mode == "full" || mode == "lower") {
vc<int> Q = calc();
P.insert(P.end(), all(Q));
}
if (mode == "full" || mode == "upper") {
if (!P.empty()) P.pop_back();
reverse(all(I));
vc<int> Q = calc();
P.insert(P.end(), all(Q));
}
if (mode == "upper") reverse(all(P));
if (len(P) >= 2 && P[0] == P.back()) P.pop_back();
return P;
}
#line 7 "main.cpp"
vi X, Y;
int qcnt = 0;
int ask(int i, int j, int k) {
++qcnt;
/*
#if defined(LOCAL)
ll a = X[j] - X[i], b = Y[j] - Y[i];
ll c = X[k] - X[i], d = Y[k] - Y[i];
ll det = a * d - b * c;
return (det >= 0 ? 1 : -1);
#endif
*/
print("?", 1 + i, 1 + j, 1 + k);
INT(x);
return x;
}
// 周期 N の数列の極小値を求める
template <typename F>
int periodic_min_comp(F comp, ll N) {
ll L = 0, M = N, R = N + N;
while (1) {
if (R - L == 2) break;
ll L1 = floor(L + M, 2), R1 = ceil(M + R, 2);
if (comp(L1, M)) { R = M, M = L1; }
elif (comp(R1, M)) { L = M, M = R1; }
else {
L = L1, R = R1;
}
}
return M;
}
void solve() {
LL(N);
/*
#if defined(LOCAL)
ll LIM = 1000000000;
X.resize(N), Y.resize(N);
FOR(i, N) X[i] = RNG(0, LIM);
FOR(i, N) Y[i] = RNG(0, LIM);
vc<pi> XY(N);
FOR(i, N) XY[i] = {X[i], Y[i]};
vc<int> god = ConvexHull(XY);
FOR(i, N) print("point", XY[i]);
print(god);
#endif
*/
vc<int> I = {0, 1, 2};
// counter clockwise
if (ask(0, 1, 2) == -1) I = {0, 2, 1};
FOR(idx, 3, N) {
// I[0] から見て l と r の間
bool outside = [&]() {
// if (ask(I[0], I[1], idx) == -1) return true;
int n = len(I);
int m = n / 2;
int l = 0, r = n;
// I[l] < idx < I[n]
while (l + 1 < r) {
int m = (l + r) / 2;
if (ask(I[0], I[m], idx) == 1) {
l = m;
} else {
r = m;
}
}
if (l == 0 || r == n) return true;
if (ask(I[l], I[r], idx) == 1) { return false; }
return true;
}();
if (!outside) continue;
int n = len(I);
int b = periodic_min_comp(
[&](int i, int j) -> bool {
i %= n, j %= n;
if (i == j) return false;
return ask(idx, I[i], I[j]) == 1;
},
n);
int a = periodic_min_comp(
[&](int i, int j) -> bool {
i %= n, j %= n;
if (i == j) return false;
return ask(idx, I[j], I[i]) == 1;
},
n);
// idx, [b, a]
vc<int> J = {int(idx)};
int k = b;
while (1) {
J.eb(I[k % n]);
if ((k - a) % n == 0) break;
++k;
}
swap(I, J);
}
/*
#if defined(LOCAL)
print("you", I);
print("ans", god);
sort(all(I));
sort(all(god));
print(I == god ? "AC" : "WA");
print("query", qcnt);
return;
#endif
*/
for (auto&& x: I) ++x;
print("!", I);
}
signed main() {
solve();
return 0;
}
詳細信息
Test #1:
score: 0
Wrong Answer
time: 3ms
memory: 3416kb
input:
5 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1
output:
? 1 2 3 ? 1 3 4 ? 4 3 1 ? 4 1 3 ? 4 2 3 ? 4 1 3 ? 4 1 2 ? 4 1 2 ? 4 1 3 ? 4 2 5 ? 5 2 4 ? 5 4 2 ? 5 1 2 ? 5 4 2 ? 5 4 1 ? 5 4 1 ? 5 4 2 ! 5 2 1 4
result:
wrong answer format Unexpected end of file - int32 expected