QOJ.ac

QOJ

IDSubmission IDProblemHackerOwnerResultSubmit timeJudge time
#973#639349#9457. Prime Sethos_lyricmaspyFailed.2024-10-13 21:48:002024-10-13 21:48:00

Details

Extra Test:

Accepted
time: 75ms
memory: 12932kb

input:

4
3000 1499
41 42 251 252 461 462 671 672 881 882 1091 1092 1301 1302 1511 1512 1721 1722 1931 1932 2141 2142 2351 2352 2561 2562 2771 2772 2981 2982 3191 3192 3401 3402 3611 3612 3821 3822 4031 4032 4241 4242 4451 4452 4661 4662 4871 4872 5081 5082 5291 5292 5501 5502 5711 5712 5921 5922 6131 6132 ...

output:

2998
3000
3000
1000

result:

ok 4 lines

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#639349#9457. Prime SetmaspyAC ✓353ms13188kbC++2027.0kb2024-10-13 19:05:532024-10-13 19:28:33

answer

#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else

// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
  vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T floor(T a, T b) {
  return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
  return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
  return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sm = 0;
  for (auto &&a: A) sm += a;
  return sm;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    (check(x) ? ok : ng) = x;
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    (check(x) ? ok : ng) = x;
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}

template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
  vc<T> &res = first;
  (res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 1 "library/other/io.hpp"
#define FASTIO
#include <unistd.h>

// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;

struct Pre {
  char num[10000][4];
  constexpr Pre() : num() {
    for (int i = 0; i < 10000; i++) {
      int n = i;
      for (int j = 3; j >= 0; j--) {
        num[i][j] = n % 10 | '0';
        n /= 10;
      }
    }
  }
} constexpr pre;

inline void load() {
  memcpy(ibuf, ibuf + pil, pir - pil);
  pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
  pil = 0;
  if (pir < SZ) ibuf[pir++] = '\n';
}

inline void flush() {
  fwrite(obuf, 1, por, stdout);
  por = 0;
}

void rd(char &c) {
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
}

void rd(string &x) {
  x.clear();
  char c;
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
  do {
    x += c;
    if (pil == pir) load();
    c = ibuf[pil++];
  } while (!isspace(c));
}

template <typename T>
void rd_real(T &x) {
  string s;
  rd(s);
  x = stod(s);
}

template <typename T>
void rd_integer(T &x) {
  if (pil + 100 > pir) load();
  char c;
  do
    c = ibuf[pil++];
  while (c < '-');
  bool minus = 0;
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (c == '-') { minus = 1, c = ibuf[pil++]; }
  }
  x = 0;
  while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (minus) x = -x;
  }
}

void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }

template <class T, class U>
void rd(pair<T, U> &p) {
  return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
  if constexpr (N < std::tuple_size<T>::value) {
    auto &x = std::get<N>(t);
    rd(x);
    rd_tuple<N + 1>(t);
  }
}
template <class... T>
void rd(tuple<T...> &tpl) {
  rd_tuple(tpl);
}

template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
  for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
  for (auto &d: x) rd(d);
}

void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
  rd(h), read(t...);
}

void wt(const char c) {
  if (por == SZ) flush();
  obuf[por++] = c;
}
void wt(const string s) {
  for (char c: s) wt(c);
}
void wt(const char *s) {
  size_t len = strlen(s);
  for (size_t i = 0; i < len; i++) wt(s[i]);
}

template <typename T>
void wt_integer(T x) {
  if (por > SZ - 100) flush();
  if (x < 0) { obuf[por++] = '-', x = -x; }
  int outi;
  for (outi = 96; x >= 10000; outi -= 4) {
    memcpy(out + outi, pre.num[x % 10000], 4);
    x /= 10000;
  }
  if (x >= 1000) {
    memcpy(obuf + por, pre.num[x], 4);
    por += 4;
  } else if (x >= 100) {
    memcpy(obuf + por, pre.num[x] + 1, 3);
    por += 3;
  } else if (x >= 10) {
    int q = (x * 103) >> 10;
    obuf[por] = q | '0';
    obuf[por + 1] = (x - q * 10) | '0';
    por += 2;
  } else
    obuf[por++] = x | '0';
  memcpy(obuf + por, out + outi + 4, 96 - outi);
  por += 96 - outi;
}

template <typename T>
void wt_real(T x) {
  ostringstream oss;
  oss << fixed << setprecision(15) << double(x);
  string s = oss.str();
  wt(s);
}

void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }

template <class T, class U>
void wt(const pair<T, U> val) {
  wt(val.first);
  wt(' ');
  wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
  if constexpr (N < std::tuple_size<T>::value) {
    if constexpr (N > 0) { wt(' '); }
    const auto x = std::get<N>(t);
    wt(x);
    wt_tuple<N + 1>(t);
  }
}
template <class... T>
void wt(tuple<T...> tpl) {
  wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}
template <class T>
void wt(const vector<T> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}

void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  wt(head);
  if (sizeof...(Tail)) wt(' ');
  print(forward<Tail>(tail)...);
}

// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;

#if defined(LOCAL)
#define SHOW(...) SHOW_IMPL(__VA_ARGS__, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__)
#define SHOW_IMPL(_1, _2, _3, _4, _5, _6, NAME, ...) NAME
#define SHOW1(x) print(#x, "=", (x)), flush()
#define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush()
#define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush()
#define SHOW4(x, y, z, w) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush()
#define SHOW5(x, y, z, w, v) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v)), flush()
#define SHOW6(x, y, z, w, v, u) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v), #u, "=", (u)), flush()
#else
#define SHOW(...)
#endif

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define U32(...)   \
  u32 __VA_ARGS__; \
  read(__VA_ARGS__)
#define U64(...)   \
  u64 __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)   \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"

#line 2 "library/nt/primetable.hpp"

template <typename T = int>
vc<T> primetable(int LIM) {
  ++LIM;
  const int S = 32768;
  static int done = 2;
  static vc<T> primes = {2}, sieve(S + 1);

  if (done < LIM) {
    done = LIM;

    primes = {2}, sieve.assign(S + 1, 0);
    const int R = LIM / 2;
    primes.reserve(int(LIM / log(LIM) * 1.1));
    vc<pair<int, int>> cp;
    for (int i = 3; i <= S; i += 2) {
      if (!sieve[i]) {
        cp.eb(i, i * i / 2);
        for (int j = i * i; j <= S; j += 2 * i) sieve[j] = 1;
      }
    }
    for (int L = 1; L <= R; L += S) {
      array<bool, S> block{};
      for (auto& [p, idx]: cp)
        for (int i = idx; i < S + L; idx = (i += p)) block[i - L] = 1;
      FOR(i, min(S, R - L)) if (!block[i]) primes.eb((L + i) * 2 + 1);
    }
  }
  int k = LB(primes, LIM + 1);
  return {primes.begin(), primes.begin() + k};
}
#line 2 "library/ds/my_bitset.hpp"

// https://codeforces.com/contest/914/problem/F
// https://yukicoder.me/problems/no/142
// わずかに普通の bitset より遅いときもあるようだが,
// 固定長にしたくないときや slice 操作が必要なときに使う
struct My_Bitset {
  using T = My_Bitset;
  int N;
  vc<u64> dat;

  // x で埋める
  My_Bitset(int N = 0, int x = 0) : N(N) {
    assert(x == 0 || x == 1);
    u64 v = (x == 0 ? 0 : -1);
    dat.assign((N + 63) >> 6, v);
    if (N) dat.back() >>= (64 * len(dat) - N);
  }

  int size() { return N; }

  void resize(int size) {
    dat.resize((size + 63) >> 6);
    int remainingBits = size & 63;
    if (remainingBits != 0) {
      u64 mask = (u64(1) << remainingBits) - 1;
      dat.back() &= mask;
    }
    N = size;
  }

  static T from_string(string &S) {
    int N = len(S);
    T ANS(N);
    FOR(i, N) ANS[i] = (S[i] == '1');
    return ANS;
  }

  // thanks to chatgpt!
  class Proxy {
  public:
    Proxy(vc<u64> &d, int i) : dat(d), index(i) {}
    operator bool() const { return (dat[index >> 6] >> (index & 63)) & 1; }

    Proxy &operator=(u64 value) {
      dat[index >> 6] &= ~(u64(1) << (index & 63));
      dat[index >> 6] |= (value & 1) << (index & 63);
      return *this;
    }
    void flip() {
      dat[index >> 6] ^= (u64(1) << (index & 63)); // XOR to flip the bit
    }

  private:
    vc<u64> &dat;
    int index;
  };

  Proxy operator[](int i) { return Proxy(dat, i); }

  bool operator==(const T &p) {
    assert(N == p.N);
    FOR(i, len(dat)) if (dat[i] != p.dat[i]) return false;
    return true;
  }

  T &operator&=(const T &p) {
    assert(N == p.N);
    FOR(i, len(dat)) dat[i] &= p.dat[i];
    return *this;
  }
  T &operator|=(const T &p) {
    assert(N == p.N);
    FOR(i, len(dat)) dat[i] |= p.dat[i];
    return *this;
  }
  T &operator^=(const T &p) {
    assert(N == p.N);
    FOR(i, len(dat)) dat[i] ^= p.dat[i];
    return *this;
  }
  T operator&(const T &p) const { return T(*this) &= p; }
  T operator|(const T &p) const { return T(*this) |= p; }
  T operator^(const T &p) const { return T(*this) ^= p; }
  T operator~() const {
    T p = (*this);
    p.flip_range(0, N);
    return p;
  }

  int count() {
    int ans = 0;
    for (u64 val: dat) ans += popcnt(val);
    return ans;
  }

  int dot(T &p) {
    assert(N == p.N);
    int ans = 0;
    FOR(i, len(dat)) ans += popcnt(dat[i] & p.dat[i]);
    return ans;
  }

  int dot_mod_2(T &p) {
    assert(N == p.N);
    int ans = 0;
    FOR(i, len(dat)) ans ^= popcnt_mod_2(dat[i] & p.dat[i]);
    return ans;
  }

  int next(int i) {
    chmax(i, 0);
    if (i >= N) return N;
    int k = i >> 6;
    {
      u64 x = dat[k];
      int s = i & 63;
      x = (x >> s) << s;
      if (x) return (k << 6) | lowbit(x);
    }
    FOR(idx, k + 1, len(dat)) {
      if (dat[idx] == 0) continue;
      return (idx << 6) | lowbit(dat[idx]);
    }
    return N;
  }

  int prev(int i) {
    chmin(i, N - 1);
    if (i <= -1) return -1;
    int k = i >> 6;
    if ((i & 63) < 63) {
      u64 x = dat[k];
      x &= (u64(1) << ((i & 63) + 1)) - 1;
      if (x) return (k << 6) | topbit(x);
      --k;
    }
    FOR_R(idx, k + 1) {
      if (dat[idx] == 0) continue;
      return (idx << 6) | topbit(dat[idx]);
    }
    return -1;
  }

  My_Bitset range(int L, int R) {
    assert(L <= R);
    My_Bitset p(R - L);
    int rm = (R - L) & 63;
    FOR(rm) {
      p[R - L - 1] = bool((*this)[R - 1]);
      --R;
    }
    int n = (R - L) >> 6;
    int hi = L & 63;
    int lo = 64 - hi;
    int s = L >> 6;
    if (hi == 0) {
      FOR(i, n) { p.dat[i] ^= dat[s + i]; }
    } else {
      FOR(i, n) { p.dat[i] ^= (dat[s + i] >> hi) ^ (dat[s + i + 1] << lo); }
    }
    return p;
  }

  My_Bitset slice(int L, int R) { return range(L, R); }

  int count_range(int L, int R) {
    assert(L <= R);
    int cnt = 0;
    while ((L < R) && (L & 63)) cnt += (*this)[L++];
    while ((L < R) && (R & 63)) cnt += (*this)[--R];
    int l = L >> 6, r = R >> 6;
    FOR(i, l, r) cnt += popcnt(dat[i]);
    return cnt;
  }

  // [L,R) に p を代入
  void assign_to_range(int L, int R, My_Bitset &p) {
    assert(p.N == R - L);
    int a = 0, b = p.N;
    while (L < R && (L & 63)) { (*this)[L++] = bool(p[a++]); }
    while (L < R && (R & 63)) { (*this)[--R] = bool(p[--b]); }
    // p[a:b] を [L:R] に
    int l = L >> 6, r = R >> 6;
    int s = a >> 6, t = b >> t;
    int n = r - l;
    if (!(a & 63)) {
      FOR(i, n) dat[l + i] = p.dat[s + i];
    } else {
      int hi = a & 63;
      int lo = 64 - hi;
      FOR(i, n) dat[l + i] = (p.dat[s + i] >> hi) | (p.dat[1 + s + i] << lo);
    }
  }

  // [L,R) に p を xor
  void xor_to_range(int L, int R, My_Bitset &p) {
    assert(p.N == R - L);
    int a = 0, b = p.N;
    while (L < R && (L & 63)) {
      dat[L >> 6] ^= u64(p[a]) << (L & 63);
      ++a, ++L;
    }
    while (L < R && (R & 63)) {
      --b, --R;
      dat[R >> 6] ^= u64(p[b]) << (R & 63);
    }
    // p[a:b] を [L:R] に
    int l = L >> 6, r = R >> 6;
    int s = a >> 6, t = b >> t;
    int n = r - l;
    if (!(a & 63)) {
      FOR(i, n) dat[l + i] ^= p.dat[s + i];
    } else {
      int hi = a & 63;
      int lo = 64 - hi;
      FOR(i, n) dat[l + i] ^= (p.dat[s + i] >> hi) | (p.dat[1 + s + i] << lo);
    }
  }

  // 行列基本変形で使うやつ
  // p は [i:N) にしかないとして p を xor する
  void xor_suffix(int i, My_Bitset &p) {
    assert(N == p.N && 0 <= i && i < N);
    FOR(k, i / 64, len(dat)) { dat[k] ^= p.dat[k]; }
  }

  // [L,R) に p を and
  void and_to_range(int L, int R, My_Bitset &p) {
    assert(p.N == R - L);
    int a = 0, b = p.N;
    while (L < R && (L & 63)) {
      if (!p[a]) (*this)[L] = 0;
      a++, L++;
    }
    while (L < R && (R & 63)) {
      --b, --R;
      if (!p[b]) (*this)[R] = 0;
    }
    // p[a:b] を [L:R] に
    int l = L >> 6, r = R >> 6;
    int s = a >> 6, t = b >> t;
    int n = r - l;
    if (!(a & 63)) {
      FOR(i, n) dat[l + i] &= p.dat[s + i];
    } else {
      int hi = a & 63;
      int lo = 64 - hi;
      FOR(i, n) dat[l + i] &= (p.dat[s + i] >> hi) | (p.dat[1 + s + i] << lo);
    }
  }

  // [L,R) に p を or
  void or_to_range(int L, int R, My_Bitset &p) {
    assert(p.N == R - L);
    int a = 0, b = p.N;
    while (L < R && (L & 63)) {
      dat[L >> 6] |= u64(p[a]) << (L & 63);
      ++a, ++L;
    }
    while (L < R && (R & 63)) {
      --b, --R;
      dat[R >> 6] |= u64(p[b]) << (R & 63);
    }
    // p[a:b] を [L:R] に
    int l = L >> 6, r = R >> 6;
    int s = a >> 6, t = b >> t;
    int n = r - l;
    if (!(a & 63)) {
      FOR(i, n) dat[l + i] |= p.dat[s + i];
    } else {
      int hi = a & 63;
      int lo = 64 - hi;
      FOR(i, n) dat[l + i] |= (p.dat[s + i] >> hi) | (p.dat[1 + s + i] << lo);
    }
  }
  // 行列基本変形で使うやつ
  // p は [i:N) にしかないとして p を or する
  void or_suffix(int i, My_Bitset &p) {
    assert(N == p.N && 0 <= i && i < N);
    FOR(k, i / 64, len(dat)) { dat[k] |= p.dat[k]; }
  }

  // [L,R) を 1 に変更
  void set_range(int L, int R) {
    while (L < R && (L & 63)) { set(L++); }
    while (L < R && (R & 63)) { set(--R); }
    FOR(i, L >> 6, R >> 6) dat[i] = u64(-1);
  }

  // [L,R) を 1 に変更
  void reset_range(int L, int R) {
    while (L < R && (L & 63)) { reset(L++); }
    while (L < R && (R & 63)) { reset(--R); }
    FOR(i, L >> 6, R >> 6) dat[i] = u64(0);
  }

  // [L,R) を flip
  void flip_range(int L, int R) {
    while (L < R && (L & 63)) { flip(L++); }
    while (L < R && (R & 63)) { flip(--R); }
    FOR(i, L >> 6, R >> 6) dat[i] ^= u64(-1);
  }

  // bitset に仕様を合わせる
  void set(int i) { (*this)[i] = 1; }
  void reset(int i) { (*this)[i] = 0; }
  void flip(int i) { (*this)[i].flip(); }
  void set() {
    fill(all(dat), u64(-1));
    resize(N);
  }
  void reset() { fill(all(dat), 0); }
  void flip() {
    FOR(i, len(dat) - 1) { dat[i] = u64(-1) ^ dat[i]; }
    int i = len(dat) - 1;
    FOR(k, 64) {
      if (64 * i + k >= size()) break;
      flip(64 * i + k);
    }
  }
  bool any() {
    FOR(i, len(dat)) {
      if (dat[i]) return true;
    }
    return false;
  }

  bool ALL() {
    dat.resize((N + 63) >> 6);
    int r = N & 63;
    if (r != 0) {
      u64 mask = (u64(1) << r) - 1;
      if (dat.back() != mask) return 0;
    }
    for (int i = 0; i < N / 64; ++i)
      if (dat[i] != u64(-1)) return false;
    return true;
  }

  int _Find_first() { return next(0); }
  int _Find_next(int p) { return next(p + 1); }

  static string TO_STR[256];
  string to_string() const {
    if (TO_STR[0].empty()) precompute();
    string S;
    for (auto &x: dat) { FOR(i, 8) S += TO_STR[(x >> (8 * i) & 255)]; }
    S.resize(N);
    return S;
  }

  static void precompute() {
    FOR(s, 256) {
      string x;
      FOR(i, 8) x += '0' + (s >> i & 1);
      TO_STR[s] = x;
    }
  }
};
string My_Bitset::TO_STR[256];
#line 2 "library/flow/bipartite_dense.hpp"

// vc<bitset> で biadj matrix を渡す
// N_1^2N_2/w.
// (5000,5000) で 300ms 程度で動く場合がある
// https://qoj.ac/problem/6308
// (10000?, 5000) 655ms
// https://codeforces.com/contest/1045/problem/A
// (10000, 20000) で 3837ms
// https://codeforces.com/contest/786/problem/E
// (10000, 10000) 6500ms TLE. row, col とも shuffle で 3000ms AC.
// bitset の方が My_Bitset より高速?(2024/05/27)
template <typename BS>
struct BipartiteMatching_Dense {
  int N1, N2;
  vc<BS>& adj;
  vc<int> match_1, match_2;
  vc<int> que;
  vc<int> prev;
  BS vis;

  BipartiteMatching_Dense(vc<BS>& adj, int N1, int N2) : N1(N1), N2(N2), adj(adj), match_1(N1, -1), match_2(N2, -1) {
    if constexpr (is_same_v<BS, My_Bitset>) vis.resize(N2);
    FOR(s, N1) bfs(s);
  }

  void bfs(int s) {
    if (match_1[s] != -1) return;
    que.resize(N1), prev.resize(N1);
    int l = 0, r = 0;
    prev[s] = -1;
    vis.set();

    que[r++] = s;
    while (l < r) {
      int u = que[l++];
      BS cand = vis & adj[u];
      for (int v = cand._Find_first(); v < N2; v = cand._Find_next(v)) {
        vis[v] = 0;
        if (match_2[v] != -1) {
          que[r++] = match_2[v];
          prev[match_2[v]] = u;
          continue;
        }
        int a = u, b = v;
        while (a != -1) {
          int t = match_1[a];
          match_1[a] = b, match_2[b] = a, a = prev[a], b = t;
        }
        return;
      }
    }
    return;
  }

  vc<pair<int, int>> matching() {
    vc<pair<int, int>> res;
    FOR(v, N1) if (match_1[v] != -1) res.eb(v, match_1[v]);
    return res;
  }

  pair<vc<int>, vc<int>> vertex_cover() {
    vc<int> que(N1);
    int l = 0, r = 0;
    vis.set();
    vc<bool> done(N1);
    FOR(i, N1) {
      if (match_1[i] == -1) done[i] = 1, que[r++] = i;
    }
    while (l < r) {
      int a = que[l++];
      BS cand = adj[a] & vis;
      for (int b = cand._Find_first(); b < N2; b = cand._Find_next(b)) {
        vis[b] = 0;
        int to = match_2[b];
        assert(to != -1);
        if (!done[to]) done[to] = 1, que[r++] = to;
      }
    }
    vc<int> left, right;
    FOR(i, N1) if (!done[i]) left.eb(i);
    FOR(i, N2) if (!vis[i]) right.eb(i);
    return {left, right};
  }
};
#line 7 "main.cpp"

using BS = My_Bitset;

int isp[1 << 21];

void init() {
  for (auto& p: primetable(1 << 21)) { isp[p] = 1; }
}

void solve() {
  LL(N, K);
  VEC(ll, A, N);
  ll ma = MAX(A);
  vc<int> deg(N);
  FOR(j, N) FOR(i, j) {
    if (isp[A[i] + A[j]]) { deg[i]++, deg[j]++; }
  }
  ll LIM = 0;
  FOR(i, N) LIM += (deg[i] >= 1);

  ll one = 0;
  {
    vi B;
    for (auto& x: A) {
      if (x == 1) ++one;
      if (x > 1) B.eb(x);
    }
    swap(A, B);
    N = len(A);
  }

  auto f = [&](int k) -> int {
    assert(2 * k <= one);
    // (1,1) を k ペア作ったときの (1,1) を含めて数えた max match
    vi EV, OD;
    for (auto& x: A) {
      if (x % 2 == 0) EV.eb(x);
      if (x % 2 == 1) OD.eb(x);
    }
    FOR(one - 2 * k) OD.eb(1);
    int N1 = len(EV), N2 = len(OD);
    vc<BS> adj(N1, BS(N2));
    FOR(i, N1) FOR(j, N2) { adj[i][j] = isp[EV[i] + OD[j]]; }
    BipartiteMatching_Dense<BS> BM(adj, N1, N2);
    int m = len(BM.matching());
    return m + k;
  };

  ll M = [&]() -> ll {
    ll n = one / 2;
    ll ANS = 0;
    ll a = f(0), b = f(n);
    chmax(ANS, a), chmax(ANS, b);
    FOR(k, -1, 2) {
      ll x = k + (n + b - a) / 2;
      if (0 <= x && x <= n) chmax(ANS, f(x));
    }
    // FOR(i, n + 1) chmax(ANS, f(i));
    return ANS;
  }();
  chmin(M, K);
  ll ANS = 2 * M + (K - M);
  chmin(ANS, LIM);
  print(ANS);
}

signed main() {
  init();
  INT(T);
  FOR(T) solve();
  return 0;
}