QOJ.ac
QOJ
ID | 提交记录ID | 题目 | Hacker | Owner | 结果 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|
#1134 | #706124 | #9545. Magical Set | hos_lyric | ucup-team1134 | Failed. | 2024-11-05 20:23:35 | 2024-11-05 20:23:35 |
详细
Extra Test:
Accepted
time: 458ms
memory: 33696kb
input:
300 921080160 964323360 879278400 882882000 754593840 949188240 797837040 836035200 871350480 714954240 673152480 868467600 815134320 896575680 998197200 834593760 697656960 67108864 819458640 740900160 772611840 833152320 962161200 707747040 931890960 886485600 797116320 830269440 701981280 8021613...
output:
3277
result:
ok single line: '3277'
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#706124 | #9545. Magical Set | ucup-team1134# | AC ✓ | 55ms | 5176kb | C++23 | 17.5kb | 2024-11-03 07:13:46 | 2024-11-05 20:20:15 |
answer
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return true; } return false; }
template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return true; } return false; }
#define vi vector<int>
#define vl vector<ll>
#define vii vector<pair<int,int>>
#define vll vector<pair<ll,ll>>
#define vvi vector<vector<int>>
#define vvl vector<vector<ll>>
#define vvii vector<vector<pair<int,int>>>
#define vvll vector<vector<pair<ll,ll>>>
#define vst vector<string>
#define pii pair<int,int>
#define pll pair<ll,ll>
#define pb push_back
#define all(x) (x).begin(),(x).end()
#define mkunique(x) sort(all(x));(x).erase(unique(all(x)),(x).end())
#define fi first
#define se second
#define mp make_pair
#define si(x) int(x.size())
const int mod=998244353,MAX=300005,INF=15<<26;
// フローのみ
// from: https://gist.github.com/yosupo06/ddd51afb727600fd95d9d8ad6c3c80c9
// (based on AtCoder STL)
#ifndef ATCODER_INTERNAL_QUEUE_HPP
#define ATCODER_INTERNAL_QUEUE_HPP 1
#include <vector>
namespace atcoder {
namespace internal {
template <class T> struct simple_queue {
std::vector<T> payload;
int pos = 0;
void reserve(int n) { payload.reserve(n); }
int size() const { return int(payload.size()) - pos; }
bool empty() const { return pos == int(payload.size()); }
void push(const T& t) { payload.push_back(t); }
T& front() { return payload[pos]; }
void clear() {
payload.clear();
pos = 0;
}
void pop() { pos++; }
};
} // namespace internal
} // namespace atcoder
#endif // ATCODER_INTERNAL_QUEUE_HPP
#ifndef ATCODER_MAXFLOW_HPP
#define ATCODER_MAXFLOW_HPP 1
#include <algorithm>
#include <cassert>
#include <limits>
#include <queue>
#include <vector>
namespace atcoder {
template <class Cap> struct mf_graph {
public:
mf_graph() : _n(0) {}
mf_graph(int n) : _n(n), g(n) {}
int add_edge(int from, int to, Cap cap) {
assert(0 <= from && from < _n);
assert(0 <= to && to < _n);
assert(0 <= cap);
int m = int(pos.size());
pos.push_back({from, int(g[from].size())});
g[from].push_back(_edge{to, int(g[to].size()), cap});
g[to].push_back(_edge{from, int(g[from].size()) - 1, 0});
return m;
}
struct edge {
int from, to;
Cap cap, flow;
};
edge get_edge(int i) {
int m = int(pos.size());
assert(0 <= i && i < m);
auto _e = g[pos[i].first][pos[i].second];
auto _re = g[_e.to][_e.rev];
return edge{pos[i].first, _e.to, _e.cap + _re.cap, _re.cap};
}
std::vector<edge> edges() {
int m = int(pos.size());
std::vector<edge> result;
for (int i = 0; i < m; i++) {
result.push_back(get_edge(i));
}
return result;
}
void change_edge(int i, Cap new_cap, Cap new_flow) {
int m = int(pos.size());
assert(0 <= i && i < m);
assert(0 <= new_flow && new_flow <= new_cap);
auto& _e = g[pos[i].first][pos[i].second];
auto& _re = g[_e.to][_e.rev];
_e.cap = new_cap - new_flow;
_re.cap = new_flow;
}
Cap flow(int s, int t) {
return flow(s, t, std::numeric_limits<Cap>::max());
}
Cap flow(int s, int t, Cap flow_limit) {
assert(0 <= s && s < _n);
assert(0 <= t && t < _n);
std::vector<int> level(_n), iter(_n);
internal::simple_queue<int> que;
auto bfs = [&]() {
std::fill(level.begin(), level.end(), -1);
level[s] = 0;
que.clear();
que.push(s);
while (!que.empty()) {
int v = que.front();
que.pop();
for (auto e : g[v]) {
if (e.cap == 0 || level[e.to] >= 0) continue;
level[e.to] = level[v] + 1;
if (e.to == t) return;
que.push(e.to);
}
}
};
auto dfs = [&](auto self, int v, Cap up) {
if (v == s) return up;
Cap res = 0;
int level_v = level[v];
for (int& i = iter[v]; i < int(g[v].size()); i++) {
_edge& e = g[v][i];
if (level_v <= level[e.to] || g[e.to][e.rev].cap == 0) continue;
Cap d =
self(self, e.to, std::min(up - res, g[e.to][e.rev].cap));
if (d <= 0) continue;
g[v][i].cap += d;
g[e.to][e.rev].cap -= d;
res += d;
if (res == up) break;
}
return res;
};
Cap flow = 0;
while (flow < flow_limit) {
bfs();
if (level[t] == -1) break;
std::fill(iter.begin(), iter.end(), 0);
while (flow < flow_limit) {
Cap f = dfs(dfs, t, flow_limit - flow);
if (!f) break;
flow += f;
}
}
return flow;
}
std::vector<bool> min_cut(int s) {
std::vector<bool> visited(_n);
internal::simple_queue<int> que;
que.push(s);
while (!que.empty()) {
int p = que.front();
que.pop();
visited[p] = true;
for (auto e : g[p]) {
if (e.cap && !visited[e.to]) {
visited[e.to] = true;
que.push(e.to);
}
}
}
return visited;
}
private:
int _n;
struct _edge {
int to, rev;
Cap cap;
};
std::vector<std::pair<int, int>> pos;
std::vector<std::vector<_edge>> g;
};
} // namespace atcoder
#endif // ATCODER_MAXFLOW_HPP
#ifndef ATCODER_MINCOSTFLOW_HPP
#define ATCODER_MINCOSTFLOW_HPP 1
#include <algorithm>
#include <cassert>
#include <limits>
#include <queue>
#include <vector>
namespace atcoder {
template <class Cap, class Cost> struct mcf_graph {
public:
mcf_graph() {}
mcf_graph(int n) : _n(n), g(n) {}
int add_edge(int from, int to, Cap cap, Cost cost) {
assert(0 <= from && from < _n);
assert(0 <= to && to < _n);
int m = int(pos.size());
pos.push_back({from, int(g[from].size())});
g[from].push_back(_edge{to, int(g[to].size()), cap, cost});
g[to].push_back(_edge{from, int(g[from].size()) - 1, 0, -cost});
return m;
}
struct edge {
int from, to;
Cap cap, flow;
Cost cost;
};
edge get_edge(int i) {
int m = int(pos.size());
assert(0 <= i && i < m);
auto _e = g[pos[i].first][pos[i].second];
auto _re = g[_e.to][_e.rev];
return edge{
pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost,
};
}
std::vector<edge> edges() {
int m = int(pos.size());
std::vector<edge> result(m);
for (int i = 0; i < m; i++) {
result[i] = get_edge(i);
}
return result;
}
std::pair<Cap, Cost> flow(int s, int t) {
return flow(s, t, std::numeric_limits<Cap>::max());
}
std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) {
return slope(s, t, flow_limit).back();
}
std::vector<std::pair<Cap, Cost>> slope(int s, int t) {
return slope(s, t, std::numeric_limits<Cap>::max());
}
std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
assert(0 <= s && s < _n);
assert(0 <= t && t < _n);
assert(s != t);
// variants (C = maxcost):
// -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0
// reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge
std::vector<Cost> dual(_n, 0), dist(_n);
std::vector<int> pv(_n), pe(_n);
std::vector<bool> vis(_n);
auto dual_ref = [&]() {
std::fill(dist.begin(), dist.end(),
std::numeric_limits<Cost>::max());
std::fill(pv.begin(), pv.end(), -1);
std::fill(pe.begin(), pe.end(), -1);
std::fill(vis.begin(), vis.end(), false);
struct Q {
Cost key;
int to;
bool operator<(Q r) const { return key > r.key; }
};
std::priority_queue<Q> que;
dist[s] = 0;
que.push(Q{0, s});
while (!que.empty()) {
int v = que.top().to;
que.pop();
if (vis[v]) continue;
vis[v] = true;
if (v == t) break;
// dist[v] = shortest(s, v) + dual[s] - dual[v]
// dist[v] >= 0 (all reduced cost are positive)
// dist[v] <= (n-1)C
for (int i = 0; i < int(g[v].size()); i++) {
auto e = g[v][i];
if (vis[e.to] || !e.cap) continue;
// |-dual[e.to] + dual[v]| <= (n-1)C
// cost <= C - -(n-1)C + 0 = nC
Cost cost = e.cost - dual[e.to] + dual[v];
if (dist[e.to] - dist[v] > cost) {
dist[e.to] = dist[v] + cost;
pv[e.to] = v;
pe[e.to] = i;
que.push(Q{dist[e.to], e.to});
}
}
}
if (!vis[t]) {
return false;
}
for (int v = 0; v < _n; v++) {
if (!vis[v]) continue;
// dual[v] = dual[v] - dist[t] + dist[v]
// = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + (shortest(s, v) + dual[s] - dual[v])
// = - shortest(s, t) + dual[t] + shortest(s, v)
// = shortest(s, v) - shortest(s, t) >= 0 - (n-1)C
dual[v] -= dist[t] - dist[v];
}
return true;
};
Cap flow = 0;
Cost cost = 0, prev_cost = -1;
std::vector<std::pair<Cap, Cost>> result;
result.push_back({flow, cost});
while (flow < flow_limit) {
if (!dual_ref()) break;
Cap c = flow_limit - flow;
for (int v = t; v != s; v = pv[v]) {
c = std::min(c, g[pv[v]][pe[v]].cap);
}
for (int v = t; v != s; v = pv[v]) {
auto& e = g[pv[v]][pe[v]];
e.cap -= c;
g[v][e.rev].cap += c;
}
Cost d = -dual[s];
flow += c;
cost += c * d;
if (prev_cost == d) {
result.pop_back();
}
result.push_back({flow, cost});
prev_cost = d;
}
return result;
}
private:
int _n;
struct _edge {
int to, rev;
Cap cap;
Cost cost;
};
std::vector<std::pair<int, int>> pos;
std::vector<std::vector<_edge>> g;
};
} // namespace atcoder
#endif // ATCODER_MINCOSTFLOW_HPP
//高速素因数分解
/**
* Author: chilli, Ramchandra Apte, Noam527, Simon Lindholm
* Date: 2019-04-24
* License: CC0
* Source: https://github.com/RamchandraApte/OmniTemplate/blob/master/modulo.hpp…
* Description: Calculate $a\cdot b\bmod c$ (or $a^b \bmod c$) for $0 \le a, b \le c \le 7.2\cdot 10^{18}$.
* Time: O(1) for \texttt{modmul}, O(\log b) for \texttt{modpow}
* Status: stress-tested, proven correct
* Details:
* This runs ~2x faster than the naive (__int128_t)a * b % M.
* A proof of correctness is in doc/modmul-proof.tex. An earlier version of the proof,
* from when the code used a * b / (long double)M, is in doc/modmul-proof.md.
* The proof assumes that long doubles are implemented as x87 80-bit floats; if they
* are 64-bit, as on e.g. MSVC, the implementation is only valid for
* $0 \le a, b \le c < 2^{52} \approx 4.5 \cdot 10^{15}$.
*/
#pragma once
typedef unsigned long long ull;
ull modmul(ull a, ull b, ull M) {
ll ret = a * b - M * ull(1.L / M * a * b);
return ret + M * (ret < 0) - M * (ret >= (ll)M);
}
ull modpow(ull b, ull e, ull mod) {
ull ans = 1;
for (; e; b = modmul(b, b, mod), e /= 2)
if (e & 1) ans = modmul(ans, b, mod);
return ans;
}
/**
* Author: chilli, SJTU, pajenegod
* Date: 2020-03-04
* License: CC0
* Source: own
* Description: Pollard-rho randomized factorization algorithm. Returns prime
* factors of a number, in arbitrary order (e.g. 2299 -> \{11, 19, 11\}).
* Time: $O(n^{1/4})$, less for numbers with small factors.
* Status: stress-tested
*
* Details: This implementation uses the improvement described here
* (https://en.wikipedia.org/wiki/Pollard%27s_rho_algorithm#Variants…), where
* one can accumulate gcd calls by some factor (40 chosen here through
* exhaustive testing). This improves performance by approximately 6-10x
* depending on the inputs and speed of gcd. Benchmark found here:
* (https://ideone.com/nGGD9T)
*
* GCD can be improved by a factor of 1.75x using Binary GCD
* (https://lemire.me/blog/2013/12/26/fastest-way-to-compute-the-greatest-common-divisor/…).
* However, with the gcd accumulation the bottleneck moves from the gcd calls
* to the modmul. As GCD only constitutes ~12% of runtime, speeding it up
* doesn't matter so much.
*
* This code can probably be sped up by using a faster mod mul - potentially
* montgomery reduction on 128 bit integers.
* Alternatively, one can use a quadratic sieve for an asymptotic improvement,
* which starts being faster in practice around 1e13.
*
* Brent's cycle finding algorithm was tested, but doesn't reduce modmul calls
* significantly.
*
* Subtle implementation notes:
* - we operate on residues in [1, n]; modmul can be proven to work for those
* - prd starts off as 2 to handle the case n = 4; it's harmless for other n
* since we're guaranteed that n > 2. (Pollard rho has problems with prime
* powers in general, but all larger ones happen to work.)
* - t starts off as 30 to make the first gcd check come earlier, as an
* optimization for small numbers.
*/
#pragma once
/**
* Author: chilli, c1729, Simon Lindholm
* Date: 2019-03-28
* License: CC0
* Source: Wikipedia, https://miller-rabin.appspot.com
* Description: Deterministic Miller-Rabin primality test.
* Guaranteed to work for numbers up to $7 \cdot 10^{18}$; for larger numbers, use Python and extend A randomly.
* Time: 7 times the complexity of $a^b \mod c$.
* Status: Stress-tested
*/
#pragma once
bool isPrime(ull n) {
if (n < 2 || n % 6 % 4 != 1) return (n | 1) == 3;
ull A[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022},
s = __builtin_ctzll(n-1), d = n >> s;
for (ull a : A) { // ^ count trailing zeroes
ull p = modpow(a%n, d, n), i = s;
while (p != 1 && p != n - 1 && a % n && i--)
p = modmul(p, p, n);
if (p != n-1 && i != s) return 0;
}
return 1;
}
ull pollard(ull n) {
auto f = [n](ull x) { return modmul(x, x, n) + 1; };
ull x = 0, y = 0, t = 30, prd = 2, i = 1, q;
while (t++ % 40 || __gcd(prd, n) == 1) {
if (x == y) x = ++i, y = f(x);
if ((q = modmul(prd, max(x,y) - min(x,y), n))) prd = q;
x = f(x), y = f(f(y));
}
return __gcd(prd, n);
}
vector<ull> factor(ull n) {
if (n == 1) return {};
if (isPrime(n)) return {n};
ull x = pollard(n);
auto l = factor(x), r = factor(n / x);
l.insert(l.end(), all(r));
return l;
}
vector<int> prime;//i番目の素数
bool is_prime[MAX+1];
void sieve(int n){
for(int i=0;i<=n;i++){
is_prime[i]=true;
}
is_prime[0]=is_prime[1]=false;
for(int i=2;i<=n;i++){
if(is_prime[i]){
prime.push_back(i);
for(int j=2*i;j<=n;j+=i){
is_prime[j] = false;
}
}
}
}
int main(){
std::ifstream in("text.txt");
std::cin.rdbuf(in.rdbuf());
cin.tie(0);
ios::sync_with_stdio(false);
ll N;cin>>N;
vl A(N);
map<int,int> MA;
ll cost=0;
vl use;
for(int i=0;i<N;i++){
cin>>A[i];
vi X;
for(int j=1;j*j<=A[i];j++){
if(A[i]%j==0){
X.pb(j);
X.pb(A[i]/j);
use.pb(j);
use.pb(A[i]/j);
}
}
mkunique(X);
auto pr=factor(A[i]);
mkunique(pr);
vi dp(si(X),INF);
dp[0]=0;
for(int i=0;i<si(X);i++){
ll x=X[i];
for(ll y:pr){
ll z=x*y;
if(binary_search(all(X),z)){
dp[lower_bound(all(X),z)-X.begin()]=dp[i]+1;
}
}
MA[x]=dp[i];
}
cost+=MA[A[i]];
}
mkunique(use);
int s=N+si(use),t=s+1;
atcoder::mcf_graph<ll,ll> G(s+2);
for(int i=0;i<N;i++){
G.add_edge(s,i,1,0);
}
for(int i=0;i<si(use);i++){
G.add_edge(N+i,t,1,MA[use[i]]);
}
for(int i=0;i<N;i++){
vi X;
for(int j=1;j*j<=A[i];j++){
if(A[i]%j==0){
X.pb(j);
X.pb(A[i]/j);
}
}
mkunique(X);
for(ll x:X){
int po=lower_bound(all(use),x)-use.begin();
G.add_edge(i,N+po,1,0);
}
}
cout<<cost-G.flow(s,t).se<<endl;
}