Farmer John's pasture can be regarded as an $N\times M$ ($2\le N\le 10^9$, $2\le M\le 2\cdot 10^5$) 2D grid of square "cells" (picture a huge chessboard). The cell at the $x$-th row from the top and $y$-th column from the right is denoted by $(x,y)$ for each $x\in [1,N], y\in [1,M]$. Furthermore, for each $y\in [1,M]$, the $y$-th column is associated with the cost $c_y$ ($1\le c_y\le 10^9$).
Bessie starts at the cell $(1,1)$. If she is currently located at the cell $(x,y)$, then she may perform one of the following actions:
- If $y<M$, Bessie may move to the next column (increasing $y$ by one) for a cost of $x^2$.
- If $x<N$, Bessie may move to the next row (increasing $x$ by one) for a cost of $c_y$.
Given $Q$ ($1\le Q\le 2\cdot 10^5$) independent queries each of the form $(x_i,y_i)$ ($x_i\in [1,N], y_i\in [1,M]$), compute the minimum possible total cost for Bessie to move from $(1,1)$ to $(x_i,y_i)$.
INPUT FORMAT (input arrives from the terminal / stdin):
The first line contains $N$ and $M$.
The second line contains $M$ space-separated integers $c_1,c_2,\ldots,c_M$.
The third line contains $Q$.
The last $Q$ lines each contain two space-separated integers $x_i$ and $y_i$.
OUTPUT FORMAT (print output to the terminal / stdout):
$Q$ lines, containing the answers for each query.
Note that the large size of integers involved in this problem may require the use of 64-bit integer data types (e.g., a "long long" in C/C++).
SAMPLE INPUT:
5 4 1 100 100 20 20 1 1 2 1 3 1 4 1 5 1 1 2 2 2 3 2 4 2 5 2 1 3 2 3 3 3 4 3 5 3 1 4 2 4 3 4 4 4 5 4
SAMPLE OUTPUT:
0 1 2 3 4 1 5 11 19 29 2 9 20 35 54 3 13 29 49 69The output in grid format:
1 2 3 4 *--*--*--*--* 1 | 0| 1| 2| 3| *--*--*--*--* 2 | 1| 5| 9|13| *--*--*--*--* 3 | 2|11|20|29| *--*--*--*--* 4 | 3|19|35|49| *--*--*--*--* 5 | 4|29|54|69| *--*--*--*--*
SCORING:
- Test cases 1-3 satisfy $N,M\le 2000$.
- Test cases 4-8 satisfy $c_2>c_3>\cdots>c_M$.
- Test cases 9-15 satisfy $N\le 2\cdot 10^5$.
- Test cases 16-20 satisfy no additional constraints.
Problem credits: Benjamin Qi