QOJ.ac

QOJ

Time Limit: 2 s Memory Limit: 512 MB Total points: 100
Statistics

小Y是一个爱好旅行的OIer。一天,她来到了一个新的城市。由于不熟悉那里的交通系统,她选择了坐地铁。

她发现每条地铁线路可以看成平面上的一条曲线,不同线路的交点处一定会设有换乘站 problem_4608_1.webp 。通过调查得知,没有线路是环线,也没有线路与自身相交。任意两条不同的线路只会在若干个点上相交,没有重合的部分,且没有三线共点的情况。即,如图所示的情况都是不存在的:

problem_4608_2.webp

小Y坐着地铁 $0$ 号线,路上依次经过了 $n$ 个换乘站。她记下了每个换乘站可以换乘的线路编号,发现每条线路与她所乘坐的线路最多只有 $2$ 个换乘站。现在小Y想知道,除掉她经过的换乘站以外,这个城市里最少有几个换乘站。只有你告诉她正确的答案,她才会答应下次带你去玩呢。

输入格式

从标准输入读入数据。

请注意本题有多组输入数据。

输入数据的第一行是一个整数 $T$,表示输入数据的组数。接下来依次给出每组数据。

对于每组数据,第一行是一个整数 $n$,表示小Y经过的换乘站的数目。第二行为 $n$ 个用空格隔开的整数,依次表示每个换乘站的可以换乘的线路编号。这些编号都在 $1$ ~ $n$ 之内。

输出格式

输出到标准输出。

对于每组输入数据,输出一行一个整数,表示除掉这 $n$ 个换乘站之外,最少有几个换乘站。

样例一

input

4
4
1 2 1 2
8
1 2 3 4 1 2 3 4
5
5 4 3 3 5
8
1 2 3 4 1 3 2 4

output

0
0
0
1

explanation

对于样例的前两组数据,一种可能的最优答案如下图所示。

problem_4608_3.png

限制与约定

一共有 50 个测试点,每个测试点 2 分。你只有在答案完全正确时才能得到该测试点的全部分数,否则不得分。

对于所有测试点,以及对于样例,$1 \le T \le 100, 1 \le n \le 44$。对于每个测试点,$n$ 的范围如下表:

测试点编号$1 \le n \le$测试点编号$1 \le n \le$
122632
232733
342833
452934
563034
683135
793235
8103336
9113436
10123537
11133637
12143738
13153838
14163939
15174039
16204140
17224240
18244341
19264441
20284542
21304642
22304743
23314843
24314944
25325044